YES We show the termination of the TRS R: U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2)) U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2)) U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2)) U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2)) U15(tt(),V2) -> U16(isNat(activate(V2))) U16(tt()) -> tt() U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1)) U22(tt(),V1) -> U23(isNat(activate(V1))) U23(tt()) -> tt() U31(tt(),V2) -> U32(isNatKind(activate(V2))) U32(tt()) -> tt() U41(tt()) -> tt() U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N)) U52(tt(),N) -> activate(N) U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N)) U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N)) U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N)) U64(tt(),M,N) -> s(plus(activate(N),activate(M))) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2)) isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1)) isNatKind(n__0()) -> tt() isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2)) isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1))) plus(N,|0|()) -> U51(isNat(N),N) plus(N,s(M)) -> U61(isNat(M),M,N) |0|() -> n__0() plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) activate(n__0()) -> |0|() activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),V1,V2) -> U12#(isNatKind(activate(V1)),activate(V1),activate(V2)) p2: U11#(tt(),V1,V2) -> isNatKind#(activate(V1)) p3: U11#(tt(),V1,V2) -> activate#(V1) p4: U11#(tt(),V1,V2) -> activate#(V2) p5: U12#(tt(),V1,V2) -> U13#(isNatKind(activate(V2)),activate(V1),activate(V2)) p6: U12#(tt(),V1,V2) -> isNatKind#(activate(V2)) p7: U12#(tt(),V1,V2) -> activate#(V2) p8: U12#(tt(),V1,V2) -> activate#(V1) p9: U13#(tt(),V1,V2) -> U14#(isNatKind(activate(V2)),activate(V1),activate(V2)) p10: U13#(tt(),V1,V2) -> isNatKind#(activate(V2)) p11: U13#(tt(),V1,V2) -> activate#(V2) p12: U13#(tt(),V1,V2) -> activate#(V1) p13: U14#(tt(),V1,V2) -> U15#(isNat(activate(V1)),activate(V2)) p14: U14#(tt(),V1,V2) -> isNat#(activate(V1)) p15: U14#(tt(),V1,V2) -> activate#(V1) p16: U14#(tt(),V1,V2) -> activate#(V2) p17: U15#(tt(),V2) -> U16#(isNat(activate(V2))) p18: U15#(tt(),V2) -> isNat#(activate(V2)) p19: U15#(tt(),V2) -> activate#(V2) p20: U21#(tt(),V1) -> U22#(isNatKind(activate(V1)),activate(V1)) p21: U21#(tt(),V1) -> isNatKind#(activate(V1)) p22: U21#(tt(),V1) -> activate#(V1) p23: U22#(tt(),V1) -> U23#(isNat(activate(V1))) p24: U22#(tt(),V1) -> isNat#(activate(V1)) p25: U22#(tt(),V1) -> activate#(V1) p26: U31#(tt(),V2) -> U32#(isNatKind(activate(V2))) p27: U31#(tt(),V2) -> isNatKind#(activate(V2)) p28: U31#(tt(),V2) -> activate#(V2) p29: U51#(tt(),N) -> U52#(isNatKind(activate(N)),activate(N)) p30: U51#(tt(),N) -> isNatKind#(activate(N)) p31: U51#(tt(),N) -> activate#(N) p32: U52#(tt(),N) -> activate#(N) p33: U61#(tt(),M,N) -> U62#(isNatKind(activate(M)),activate(M),activate(N)) p34: U61#(tt(),M,N) -> isNatKind#(activate(M)) p35: U61#(tt(),M,N) -> activate#(M) p36: U61#(tt(),M,N) -> activate#(N) p37: U62#(tt(),M,N) -> U63#(isNat(activate(N)),activate(M),activate(N)) p38: U62#(tt(),M,N) -> isNat#(activate(N)) p39: U62#(tt(),M,N) -> activate#(N) p40: U62#(tt(),M,N) -> activate#(M) p41: U63#(tt(),M,N) -> U64#(isNatKind(activate(N)),activate(M),activate(N)) p42: U63#(tt(),M,N) -> isNatKind#(activate(N)) p43: U63#(tt(),M,N) -> activate#(N) p44: U63#(tt(),M,N) -> activate#(M) p45: U64#(tt(),M,N) -> s#(plus(activate(N),activate(M))) p46: U64#(tt(),M,N) -> plus#(activate(N),activate(M)) p47: U64#(tt(),M,N) -> activate#(N) p48: U64#(tt(),M,N) -> activate#(M) p49: isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2)) p50: isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1)) p51: isNat#(n__plus(V1,V2)) -> activate#(V1) p52: isNat#(n__plus(V1,V2)) -> activate#(V2) p53: isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1)) p54: isNat#(n__s(V1)) -> isNatKind#(activate(V1)) p55: isNat#(n__s(V1)) -> activate#(V1) p56: isNatKind#(n__plus(V1,V2)) -> U31#(isNatKind(activate(V1)),activate(V2)) p57: isNatKind#(n__plus(V1,V2)) -> isNatKind#(activate(V1)) p58: isNatKind#(n__plus(V1,V2)) -> activate#(V1) p59: isNatKind#(n__plus(V1,V2)) -> activate#(V2) p60: isNatKind#(n__s(V1)) -> U41#(isNatKind(activate(V1))) p61: isNatKind#(n__s(V1)) -> isNatKind#(activate(V1)) p62: isNatKind#(n__s(V1)) -> activate#(V1) p63: plus#(N,|0|()) -> U51#(isNat(N),N) p64: plus#(N,|0|()) -> isNat#(N) p65: plus#(N,s(M)) -> U61#(isNat(M),M,N) p66: plus#(N,s(M)) -> isNat#(M) p67: activate#(n__0()) -> |0|#() p68: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p69: activate#(n__plus(X1,X2)) -> activate#(X1) p70: activate#(n__plus(X1,X2)) -> activate#(X2) p71: activate#(n__s(X)) -> s#(activate(X)) p72: activate#(n__s(X)) -> activate#(X) and R consists of: r1: U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2)) r2: U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2)) r3: U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2)) r4: U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2)) r5: U15(tt(),V2) -> U16(isNat(activate(V2))) r6: U16(tt()) -> tt() r7: U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1)) r8: U22(tt(),V1) -> U23(isNat(activate(V1))) r9: U23(tt()) -> tt() r10: U31(tt(),V2) -> U32(isNatKind(activate(V2))) r11: U32(tt()) -> tt() r12: U41(tt()) -> tt() r13: U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N)) r14: U52(tt(),N) -> activate(N) r15: U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N)) r16: U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N)) r17: U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N)) r18: U64(tt(),M,N) -> s(plus(activate(N),activate(M))) r19: isNat(n__0()) -> tt() r20: isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2)) r21: isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1)) r22: isNatKind(n__0()) -> tt() r23: isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2)) r24: isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1))) r25: plus(N,|0|()) -> U51(isNat(N),N) r26: plus(N,s(M)) -> U61(isNat(M),M,N) r27: |0|() -> n__0() r28: plus(X1,X2) -> n__plus(X1,X2) r29: s(X) -> n__s(X) r30: activate(n__0()) -> |0|() r31: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r32: activate(n__s(X)) -> s(activate(X)) r33: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p18, p19, p20, p21, p22, p24, p25, p27, p28, p29, p30, p31, p32, p33, p34, p35, p36, p37, p38, p39, p40, p41, p42, p43, p44, p46, p47, p48, p49, p50, p51, p52, p53, p54, p55, p56, p57, p58, p59, p61, p62, p63, p64, p65, p66, p68, p69, p70, p72} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),V1,V2) -> U12#(isNatKind(activate(V1)),activate(V1),activate(V2)) p2: U12#(tt(),V1,V2) -> activate#(V1) p3: activate#(n__s(X)) -> activate#(X) p4: activate#(n__plus(X1,X2)) -> activate#(X2) p5: activate#(n__plus(X1,X2)) -> activate#(X1) p6: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2)) p7: plus#(N,s(M)) -> isNat#(M) p8: isNat#(n__s(V1)) -> activate#(V1) p9: isNat#(n__s(V1)) -> isNatKind#(activate(V1)) p10: isNatKind#(n__s(V1)) -> activate#(V1) p11: isNatKind#(n__s(V1)) -> isNatKind#(activate(V1)) p12: isNatKind#(n__plus(V1,V2)) -> activate#(V2) p13: isNatKind#(n__plus(V1,V2)) -> activate#(V1) p14: isNatKind#(n__plus(V1,V2)) -> isNatKind#(activate(V1)) p15: isNatKind#(n__plus(V1,V2)) -> U31#(isNatKind(activate(V1)),activate(V2)) p16: U31#(tt(),V2) -> activate#(V2) p17: U31#(tt(),V2) -> isNatKind#(activate(V2)) p18: isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1)) p19: U21#(tt(),V1) -> activate#(V1) p20: U21#(tt(),V1) -> isNatKind#(activate(V1)) p21: U21#(tt(),V1) -> U22#(isNatKind(activate(V1)),activate(V1)) p22: U22#(tt(),V1) -> activate#(V1) p23: U22#(tt(),V1) -> isNat#(activate(V1)) p24: isNat#(n__plus(V1,V2)) -> activate#(V2) p25: isNat#(n__plus(V1,V2)) -> activate#(V1) p26: isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1)) p27: isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2)) p28: U11#(tt(),V1,V2) -> activate#(V2) p29: U11#(tt(),V1,V2) -> activate#(V1) p30: U11#(tt(),V1,V2) -> isNatKind#(activate(V1)) p31: plus#(N,s(M)) -> U61#(isNat(M),M,N) p32: U61#(tt(),M,N) -> activate#(N) p33: U61#(tt(),M,N) -> activate#(M) p34: U61#(tt(),M,N) -> isNatKind#(activate(M)) p35: U61#(tt(),M,N) -> U62#(isNatKind(activate(M)),activate(M),activate(N)) p36: U62#(tt(),M,N) -> activate#(M) p37: U62#(tt(),M,N) -> activate#(N) p38: U62#(tt(),M,N) -> isNat#(activate(N)) p39: U62#(tt(),M,N) -> U63#(isNat(activate(N)),activate(M),activate(N)) p40: U63#(tt(),M,N) -> activate#(M) p41: U63#(tt(),M,N) -> activate#(N) p42: U63#(tt(),M,N) -> isNatKind#(activate(N)) p43: U63#(tt(),M,N) -> U64#(isNatKind(activate(N)),activate(M),activate(N)) p44: U64#(tt(),M,N) -> activate#(M) p45: U64#(tt(),M,N) -> activate#(N) p46: U64#(tt(),M,N) -> plus#(activate(N),activate(M)) p47: plus#(N,|0|()) -> isNat#(N) p48: plus#(N,|0|()) -> U51#(isNat(N),N) p49: U51#(tt(),N) -> activate#(N) p50: U51#(tt(),N) -> isNatKind#(activate(N)) p51: U51#(tt(),N) -> U52#(isNatKind(activate(N)),activate(N)) p52: U52#(tt(),N) -> activate#(N) p53: U12#(tt(),V1,V2) -> activate#(V2) p54: U12#(tt(),V1,V2) -> isNatKind#(activate(V2)) p55: U12#(tt(),V1,V2) -> U13#(isNatKind(activate(V2)),activate(V1),activate(V2)) p56: U13#(tt(),V1,V2) -> activate#(V1) p57: U13#(tt(),V1,V2) -> activate#(V2) p58: U13#(tt(),V1,V2) -> isNatKind#(activate(V2)) p59: U13#(tt(),V1,V2) -> U14#(isNatKind(activate(V2)),activate(V1),activate(V2)) p60: U14#(tt(),V1,V2) -> activate#(V2) p61: U14#(tt(),V1,V2) -> activate#(V1) p62: U14#(tt(),V1,V2) -> isNat#(activate(V1)) p63: U14#(tt(),V1,V2) -> U15#(isNat(activate(V1)),activate(V2)) p64: U15#(tt(),V2) -> activate#(V2) p65: U15#(tt(),V2) -> isNat#(activate(V2)) and R consists of: r1: U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2)) r2: U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2)) r3: U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2)) r4: U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2)) r5: U15(tt(),V2) -> U16(isNat(activate(V2))) r6: U16(tt()) -> tt() r7: U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1)) r8: U22(tt(),V1) -> U23(isNat(activate(V1))) r9: U23(tt()) -> tt() r10: U31(tt(),V2) -> U32(isNatKind(activate(V2))) r11: U32(tt()) -> tt() r12: U41(tt()) -> tt() r13: U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N)) r14: U52(tt(),N) -> activate(N) r15: U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N)) r16: U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N)) r17: U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N)) r18: U64(tt(),M,N) -> s(plus(activate(N),activate(M))) r19: isNat(n__0()) -> tt() r20: isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2)) r21: isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1)) r22: isNatKind(n__0()) -> tt() r23: isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2)) r24: isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1))) r25: plus(N,|0|()) -> U51(isNat(N),N) r26: plus(N,s(M)) -> U61(isNat(M),M,N) r27: |0|() -> n__0() r28: plus(X1,X2) -> n__plus(X1,X2) r29: s(X) -> n__s(X) r30: activate(n__0()) -> |0|() r31: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2)) r32: activate(n__s(X)) -> s(activate(X)) r33: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: U11#_A(x1,x2,x3) = x2 + x3 + 5 tt_A() = 1 U12#_A(x1,x2,x3) = x2 + x3 + 4 isNatKind_A(x1) = x1 + 1 activate_A(x1) = x1 activate#_A(x1) = x1 n__s_A(x1) = x1 + 5 n__plus_A(x1,x2) = x1 + x2 + 7 plus#_A(x1,x2) = x1 + x2 s_A(x1) = x1 + 5 isNat#_A(x1) = x1 isNatKind#_A(x1) = x1 U31#_A(x1,x2) = x2 + 1 U21#_A(x1,x2) = x2 + 2 U22#_A(x1,x2) = x2 + 1 U61#_A(x1,x2,x3) = x2 + x3 + 4 isNat_A(x1) = x1 + 1 U62#_A(x1,x2,x3) = x2 + x3 + 3 U63#_A(x1,x2,x3) = x2 + x3 + 2 U64#_A(x1,x2,x3) = x2 + x3 + 1 |0|_A() = 3 U51#_A(x1,x2) = x2 + 2 U52#_A(x1,x2) = x2 + 1 U13#_A(x1,x2,x3) = x2 + x3 + 3 U14#_A(x1,x2,x3) = x2 + x3 + 2 U15#_A(x1,x2) = x2 + 1 U16_A(x1) = 2 U15_A(x1,x2) = 3 U64_A(x1,x2,x3) = x2 + x3 + 12 plus_A(x1,x2) = x1 + x2 + 7 U14_A(x1,x2,x3) = 4 U63_A(x1,x2,x3) = x2 + x3 + 12 U13_A(x1,x2,x3) = x1 + x2 + 4 U23_A(x1) = 2 U52_A(x1,x2) = x2 + 1 U62_A(x1,x2,x3) = x2 + x3 + 12 U12_A(x1,x2,x3) = x2 + x3 + 6 U22_A(x1,x2) = 3 U32_A(x1) = 2 U51_A(x1,x2) = x2 + 2 U61_A(x1,x2,x3) = x2 + x3 + 12 U11_A(x1,x2,x3) = x2 + x3 + 7 U21_A(x1,x2) = x1 + 3 U31_A(x1,x2) = 3 U41_A(x1) = x1 + 1 n__0_A() = 3 2. lexicographic path order with precedence: precedence: U52 > U14# > U62# > U63# > U64# > plus# > U12 > U22 > U15# > U12# > activate > plus > U32 > U11 > U61 > U62 > U23 > U41 > U31 > U21 > U51 > |0| > n__0 > U16 > U15 > U11# > U13# > U52# > U63 > U13 > U64 > s > isNat > n__s > U61# > isNatKind > tt > U51# > U14 > activate# > isNat# > isNatKind# > U22# > U21# > U31# > n__plus argument filter: pi(U11#) = [] pi(tt) = [] pi(U12#) = [2] pi(isNatKind) = 1 pi(activate) = [1] pi(activate#) = [] pi(n__s) = [] pi(n__plus) = [] pi(plus#) = 2 pi(s) = [] pi(isNat#) = [] pi(isNatKind#) = [1] pi(U31#) = [] pi(U21#) = [] pi(U22#) = [] pi(U61#) = [] pi(isNat) = [] pi(U62#) = [2, 3] pi(U63#) = 2 pi(U64#) = [2, 3] pi(|0|) = [] pi(U51#) = [2] pi(U52#) = [] pi(U13#) = [] pi(U14#) = [] pi(U15#) = [] pi(U16) = [] pi(U15) = [] pi(U64) = [] pi(plus) = [] pi(U14) = [] pi(U63) = [] pi(U13) = [] pi(U23) = [] pi(U52) = [2] pi(U62) = [] pi(U12) = [] pi(U22) = [] pi(U32) = [] pi(U51) = [] pi(U61) = [] pi(U11) = [] pi(U21) = [] pi(U31) = [] pi(U41) = 1 pi(n__0) = [] The next rules are strictly ordered: p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23, p24, p25, p26, p27, p28, p29, p30, p31, p32, p33, p34, p35, p36, p37, p38, p39, p40, p41, p42, p43, p44, p45, p46, p47, p48, p49, p50, p51, p52, p53, p54, p55, p56, p57, p58, p59, p60, p61, p62, p63, p64, p65 We remove them from the problem. Then no dependency pair remains.