YES We show the termination of the TRS R: natsFrom(N) -> cons(N,n__natsFrom(n__s(N))) fst(pair(XS,YS)) -> XS snd(pair(XS,YS)) -> YS splitAt(|0|(),XS) -> pair(nil(),XS) splitAt(s(N),cons(X,XS)) -> u(splitAt(N,activate(XS)),N,X,activate(XS)) u(pair(YS,ZS),N,X,XS) -> pair(cons(activate(X),YS),ZS) head(cons(N,XS)) -> N tail(cons(N,XS)) -> activate(XS) sel(N,XS) -> head(afterNth(N,XS)) take(N,XS) -> fst(splitAt(N,XS)) afterNth(N,XS) -> snd(splitAt(N,XS)) natsFrom(X) -> n__natsFrom(X) s(X) -> n__s(X) activate(n__natsFrom(X)) -> natsFrom(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: splitAt#(s(N),cons(X,XS)) -> u#(splitAt(N,activate(XS)),N,X,activate(XS)) p2: splitAt#(s(N),cons(X,XS)) -> splitAt#(N,activate(XS)) p3: splitAt#(s(N),cons(X,XS)) -> activate#(XS) p4: u#(pair(YS,ZS),N,X,XS) -> activate#(X) p5: tail#(cons(N,XS)) -> activate#(XS) p6: sel#(N,XS) -> head#(afterNth(N,XS)) p7: sel#(N,XS) -> afterNth#(N,XS) p8: take#(N,XS) -> fst#(splitAt(N,XS)) p9: take#(N,XS) -> splitAt#(N,XS) p10: afterNth#(N,XS) -> snd#(splitAt(N,XS)) p11: afterNth#(N,XS) -> splitAt#(N,XS) p12: activate#(n__natsFrom(X)) -> natsFrom#(activate(X)) p13: activate#(n__natsFrom(X)) -> activate#(X) p14: activate#(n__s(X)) -> s#(activate(X)) p15: activate#(n__s(X)) -> activate#(X) and R consists of: r1: natsFrom(N) -> cons(N,n__natsFrom(n__s(N))) r2: fst(pair(XS,YS)) -> XS r3: snd(pair(XS,YS)) -> YS r4: splitAt(|0|(),XS) -> pair(nil(),XS) r5: splitAt(s(N),cons(X,XS)) -> u(splitAt(N,activate(XS)),N,X,activate(XS)) r6: u(pair(YS,ZS),N,X,XS) -> pair(cons(activate(X),YS),ZS) r7: head(cons(N,XS)) -> N r8: tail(cons(N,XS)) -> activate(XS) r9: sel(N,XS) -> head(afterNth(N,XS)) r10: take(N,XS) -> fst(splitAt(N,XS)) r11: afterNth(N,XS) -> snd(splitAt(N,XS)) r12: natsFrom(X) -> n__natsFrom(X) r13: s(X) -> n__s(X) r14: activate(n__natsFrom(X)) -> natsFrom(activate(X)) r15: activate(n__s(X)) -> s(activate(X)) r16: activate(X) -> X The estimated dependency graph contains the following SCCs: {p2} {p13, p15} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: splitAt#(s(N),cons(X,XS)) -> splitAt#(N,activate(XS)) and R consists of: r1: natsFrom(N) -> cons(N,n__natsFrom(n__s(N))) r2: fst(pair(XS,YS)) -> XS r3: snd(pair(XS,YS)) -> YS r4: splitAt(|0|(),XS) -> pair(nil(),XS) r5: splitAt(s(N),cons(X,XS)) -> u(splitAt(N,activate(XS)),N,X,activate(XS)) r6: u(pair(YS,ZS),N,X,XS) -> pair(cons(activate(X),YS),ZS) r7: head(cons(N,XS)) -> N r8: tail(cons(N,XS)) -> activate(XS) r9: sel(N,XS) -> head(afterNth(N,XS)) r10: take(N,XS) -> fst(splitAt(N,XS)) r11: afterNth(N,XS) -> snd(splitAt(N,XS)) r12: natsFrom(X) -> n__natsFrom(X) r13: s(X) -> n__s(X) r14: activate(n__natsFrom(X)) -> natsFrom(activate(X)) r15: activate(n__s(X)) -> s(activate(X)) r16: activate(X) -> X The set of usable rules consists of r1, r12, r13, r14, r15, r16 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: splitAt#_A(x1,x2) = x1 s_A(x1) = x1 + 1 cons_A(x1,x2) = 1 activate_A(x1) = x1 + 2 natsFrom_A(x1) = 2 n__natsFrom_A(x1) = 1 n__s_A(x1) = x1 + 1 2. lexicographic path order with precedence: precedence: activate > n__s > n__natsFrom > cons > natsFrom > s > splitAt# argument filter: pi(splitAt#) = [1] pi(s) = 1 pi(cons) = [] pi(activate) = 1 pi(natsFrom) = [] pi(n__natsFrom) = [] pi(n__s) = 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) p2: activate#(n__natsFrom(X)) -> activate#(X) and R consists of: r1: natsFrom(N) -> cons(N,n__natsFrom(n__s(N))) r2: fst(pair(XS,YS)) -> XS r3: snd(pair(XS,YS)) -> YS r4: splitAt(|0|(),XS) -> pair(nil(),XS) r5: splitAt(s(N),cons(X,XS)) -> u(splitAt(N,activate(XS)),N,X,activate(XS)) r6: u(pair(YS,ZS),N,X,XS) -> pair(cons(activate(X),YS),ZS) r7: head(cons(N,XS)) -> N r8: tail(cons(N,XS)) -> activate(XS) r9: sel(N,XS) -> head(afterNth(N,XS)) r10: take(N,XS) -> fst(splitAt(N,XS)) r11: afterNth(N,XS) -> snd(splitAt(N,XS)) r12: natsFrom(X) -> n__natsFrom(X) r13: s(X) -> n__s(X) r14: activate(n__natsFrom(X)) -> natsFrom(activate(X)) r15: activate(n__s(X)) -> s(activate(X)) r16: activate(X) -> X The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: activate#_A(x1) = x1 n__s_A(x1) = x1 + 1 n__natsFrom_A(x1) = x1 + 1 2. lexicographic path order with precedence: precedence: activate# > n__natsFrom > n__s argument filter: pi(activate#) = 1 pi(n__s) = [1] pi(n__natsFrom) = [1] The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16 We remove them from the problem. Then no dependency pair remains.