YES We show the termination of the TRS R: from(X) -> cons(X,n__from(s(X))) head(cons(X,XS)) -> X |2nd|(cons(X,XS)) -> head(activate(XS)) take(|0|(),XS) -> nil() take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) sel(|0|(),cons(X,XS)) -> X sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) from(X) -> n__from(X) take(X1,X2) -> n__take(X1,X2) activate(n__from(X)) -> from(X) activate(n__take(X1,X2)) -> take(X1,X2) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: |2nd|#(cons(X,XS)) -> head#(activate(XS)) p2: |2nd|#(cons(X,XS)) -> activate#(XS) p3: take#(s(N),cons(X,XS)) -> activate#(XS) p4: sel#(s(N),cons(X,XS)) -> sel#(N,activate(XS)) p5: sel#(s(N),cons(X,XS)) -> activate#(XS) p6: activate#(n__from(X)) -> from#(X) p7: activate#(n__take(X1,X2)) -> take#(X1,X2) and R consists of: r1: from(X) -> cons(X,n__from(s(X))) r2: head(cons(X,XS)) -> X r3: |2nd|(cons(X,XS)) -> head(activate(XS)) r4: take(|0|(),XS) -> nil() r5: take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) r6: sel(|0|(),cons(X,XS)) -> X r7: sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) r8: from(X) -> n__from(X) r9: take(X1,X2) -> n__take(X1,X2) r10: activate(n__from(X)) -> from(X) r11: activate(n__take(X1,X2)) -> take(X1,X2) r12: activate(X) -> X The estimated dependency graph contains the following SCCs: {p4} {p3, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: sel#(s(N),cons(X,XS)) -> sel#(N,activate(XS)) and R consists of: r1: from(X) -> cons(X,n__from(s(X))) r2: head(cons(X,XS)) -> X r3: |2nd|(cons(X,XS)) -> head(activate(XS)) r4: take(|0|(),XS) -> nil() r5: take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) r6: sel(|0|(),cons(X,XS)) -> X r7: sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) r8: from(X) -> n__from(X) r9: take(X1,X2) -> n__take(X1,X2) r10: activate(n__from(X)) -> from(X) r11: activate(n__take(X1,X2)) -> take(X1,X2) r12: activate(X) -> X The set of usable rules consists of r1, r4, r5, r8, r9, r10, r11, r12 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: sel#_A(x1,x2) = x1 s_A(x1) = x1 + 1 cons_A(x1,x2) = x2 + 1 activate_A(x1) = x1 + 3 from_A(x1) = 3 n__from_A(x1) = 1 take_A(x1,x2) = x1 + 2 |0|_A() = 1 nil_A() = 0 n__take_A(x1,x2) = x1 + 1 2. lexicographic path order with precedence: precedence: n__take > nil > |0| > take > n__from > cons > from > activate > sel# > s argument filter: pi(sel#) = 1 pi(s) = [1] pi(cons) = 2 pi(activate) = [] pi(from) = [] pi(n__from) = [] pi(take) = [1] pi(|0|) = [] pi(nil) = [] pi(n__take) = 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: take#(s(N),cons(X,XS)) -> activate#(XS) p2: activate#(n__take(X1,X2)) -> take#(X1,X2) and R consists of: r1: from(X) -> cons(X,n__from(s(X))) r2: head(cons(X,XS)) -> X r3: |2nd|(cons(X,XS)) -> head(activate(XS)) r4: take(|0|(),XS) -> nil() r5: take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS))) r6: sel(|0|(),cons(X,XS)) -> X r7: sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) r8: from(X) -> n__from(X) r9: take(X1,X2) -> n__take(X1,X2) r10: activate(n__from(X)) -> from(X) r11: activate(n__take(X1,X2)) -> take(X1,X2) r12: activate(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: take#_A(x1,x2) = x2 s_A(x1) = 1 cons_A(x1,x2) = x1 + x2 + 1 activate#_A(x1) = x1 n__take_A(x1,x2) = x1 + x2 + 1 2. lexicographic path order with precedence: precedence: take# > n__take > activate# > cons > s argument filter: pi(take#) = 2 pi(s) = [] pi(cons) = [1, 2] pi(activate#) = 1 pi(n__take) = [1, 2] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.