YES We show the termination of the TRS R: a__f(g(X),Y) -> a__f(mark(X),f(g(X),Y)) mark(f(X1,X2)) -> a__f(mark(X1),X2) mark(g(X)) -> g(mark(X)) a__f(X1,X2) -> f(X1,X2) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__f#(g(X),Y) -> a__f#(mark(X),f(g(X),Y)) p2: a__f#(g(X),Y) -> mark#(X) p3: mark#(f(X1,X2)) -> a__f#(mark(X1),X2) p4: mark#(f(X1,X2)) -> mark#(X1) p5: mark#(g(X)) -> mark#(X) and R consists of: r1: a__f(g(X),Y) -> a__f(mark(X),f(g(X),Y)) r2: mark(f(X1,X2)) -> a__f(mark(X1),X2) r3: mark(g(X)) -> g(mark(X)) r4: a__f(X1,X2) -> f(X1,X2) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__f#(g(X),Y) -> a__f#(mark(X),f(g(X),Y)) p2: a__f#(g(X),Y) -> mark#(X) p3: mark#(g(X)) -> mark#(X) p4: mark#(f(X1,X2)) -> mark#(X1) p5: mark#(f(X1,X2)) -> a__f#(mark(X1),X2) and R consists of: r1: a__f(g(X),Y) -> a__f(mark(X),f(g(X),Y)) r2: mark(f(X1,X2)) -> a__f(mark(X1),X2) r3: mark(g(X)) -> g(mark(X)) r4: a__f(X1,X2) -> f(X1,X2) The set of usable rules consists of r1, r2, r3, r4 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: a__f#_A(x1,x2) = x1 g_A(x1) = x1 + 1 mark_A(x1) = x1 + 1 f_A(x1,x2) = x1 + 2 mark#_A(x1) = x1 a__f_A(x1,x2) = x1 + 2 2. lexicographic path order with precedence: precedence: g > mark > a__f > f > a__f# > mark# argument filter: pi(a__f#) = [] pi(g) = [] pi(mark) = [1] pi(f) = [] pi(mark#) = 1 pi(a__f) = [] The next rules are strictly ordered: p2, p3, p4, p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__f#(g(X),Y) -> a__f#(mark(X),f(g(X),Y)) and R consists of: r1: a__f(g(X),Y) -> a__f(mark(X),f(g(X),Y)) r2: mark(f(X1,X2)) -> a__f(mark(X1),X2) r3: mark(g(X)) -> g(mark(X)) r4: a__f(X1,X2) -> f(X1,X2) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__f#(g(X),Y) -> a__f#(mark(X),f(g(X),Y)) and R consists of: r1: a__f(g(X),Y) -> a__f(mark(X),f(g(X),Y)) r2: mark(f(X1,X2)) -> a__f(mark(X1),X2) r3: mark(g(X)) -> g(mark(X)) r4: a__f(X1,X2) -> f(X1,X2) The set of usable rules consists of r1, r2, r3, r4 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: a__f#_A(x1,x2) = x1 + x2 g_A(x1) = x1 + 3 mark_A(x1) = x1 + 2 f_A(x1,x2) = x2 a__f_A(x1,x2) = x2 + 1 2. lexicographic path order with precedence: precedence: mark > a__f > a__f# > f > g argument filter: pi(a__f#) = 1 pi(g) = 1 pi(mark) = 1 pi(f) = 2 pi(a__f) = 2 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.