YES We show the termination of the TRS R: active(f(f(a()))) -> mark(f(g(f(a())))) active(f(X)) -> f(active(X)) f(mark(X)) -> mark(f(X)) proper(f(X)) -> f(proper(X)) proper(a()) -> ok(a()) proper(g(X)) -> g(proper(X)) f(ok(X)) -> ok(f(X)) g(ok(X)) -> ok(g(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(f(f(a()))) -> f#(g(f(a()))) p2: active#(f(f(a()))) -> g#(f(a())) p3: active#(f(X)) -> f#(active(X)) p4: active#(f(X)) -> active#(X) p5: f#(mark(X)) -> f#(X) p6: proper#(f(X)) -> f#(proper(X)) p7: proper#(f(X)) -> proper#(X) p8: proper#(g(X)) -> g#(proper(X)) p9: proper#(g(X)) -> proper#(X) p10: f#(ok(X)) -> f#(X) p11: g#(ok(X)) -> g#(X) p12: top#(mark(X)) -> top#(proper(X)) p13: top#(mark(X)) -> proper#(X) p14: top#(ok(X)) -> top#(active(X)) p15: top#(ok(X)) -> active#(X) and R consists of: r1: active(f(f(a()))) -> mark(f(g(f(a())))) r2: active(f(X)) -> f(active(X)) r3: f(mark(X)) -> mark(f(X)) r4: proper(f(X)) -> f(proper(X)) r5: proper(a()) -> ok(a()) r6: proper(g(X)) -> g(proper(X)) r7: f(ok(X)) -> ok(f(X)) r8: g(ok(X)) -> ok(g(X)) r9: top(mark(X)) -> top(proper(X)) r10: top(ok(X)) -> top(active(X)) The estimated dependency graph contains the following SCCs: {p12, p14} {p4} {p7, p9} {p5, p10} {p11} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: top#(ok(X)) -> top#(active(X)) p2: top#(mark(X)) -> top#(proper(X)) and R consists of: r1: active(f(f(a()))) -> mark(f(g(f(a())))) r2: active(f(X)) -> f(active(X)) r3: f(mark(X)) -> mark(f(X)) r4: proper(f(X)) -> f(proper(X)) r5: proper(a()) -> ok(a()) r6: proper(g(X)) -> g(proper(X)) r7: f(ok(X)) -> ok(f(X)) r8: g(ok(X)) -> ok(g(X)) r9: top(mark(X)) -> top(proper(X)) r10: top(ok(X)) -> top(active(X)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: top#_A(x1) = x1 ok_A(x1) = x1 active_A(x1) = x1 mark_A(x1) = x1 + 2 proper_A(x1) = x1 + 1 f_A(x1) = x1 + 1 g_A(x1) = 1 a_A() = 3 2. lexicographic path order with precedence: precedence: mark > a > g > f > top# > ok > active > proper argument filter: pi(top#) = [] pi(ok) = [] pi(active) = 1 pi(mark) = [1] pi(proper) = [1] pi(f) = 1 pi(g) = [] pi(a) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: top#(ok(X)) -> top#(active(X)) and R consists of: r1: active(f(f(a()))) -> mark(f(g(f(a())))) r2: active(f(X)) -> f(active(X)) r3: f(mark(X)) -> mark(f(X)) r4: proper(f(X)) -> f(proper(X)) r5: proper(a()) -> ok(a()) r6: proper(g(X)) -> g(proper(X)) r7: f(ok(X)) -> ok(f(X)) r8: g(ok(X)) -> ok(g(X)) r9: top(mark(X)) -> top(proper(X)) r10: top(ok(X)) -> top(active(X)) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: top#(ok(X)) -> top#(active(X)) and R consists of: r1: active(f(f(a()))) -> mark(f(g(f(a())))) r2: active(f(X)) -> f(active(X)) r3: f(mark(X)) -> mark(f(X)) r4: proper(f(X)) -> f(proper(X)) r5: proper(a()) -> ok(a()) r6: proper(g(X)) -> g(proper(X)) r7: f(ok(X)) -> ok(f(X)) r8: g(ok(X)) -> ok(g(X)) r9: top(mark(X)) -> top(proper(X)) r10: top(ok(X)) -> top(active(X)) The set of usable rules consists of r1, r2, r3, r7 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: top#_A(x1) = x1 ok_A(x1) = x1 + 2 active_A(x1) = x1 + 1 f_A(x1) = x1 + 1 mark_A(x1) = 1 a_A() = 0 g_A(x1) = 1 2. lexicographic path order with precedence: precedence: g > f > mark > a > ok > active > top# argument filter: pi(top#) = 1 pi(ok) = [1] pi(active) = [] pi(f) = 1 pi(mark) = [] pi(a) = [] pi(g) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(f(X)) -> active#(X) and R consists of: r1: active(f(f(a()))) -> mark(f(g(f(a())))) r2: active(f(X)) -> f(active(X)) r3: f(mark(X)) -> mark(f(X)) r4: proper(f(X)) -> f(proper(X)) r5: proper(a()) -> ok(a()) r6: proper(g(X)) -> g(proper(X)) r7: f(ok(X)) -> ok(f(X)) r8: g(ok(X)) -> ok(g(X)) r9: top(mark(X)) -> top(proper(X)) r10: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: active#_A(x1) = x1 f_A(x1) = x1 + 1 2. lexicographic path order with precedence: precedence: f > active# argument filter: pi(active#) = 1 pi(f) = [1] The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: proper#(g(X)) -> proper#(X) p2: proper#(f(X)) -> proper#(X) and R consists of: r1: active(f(f(a()))) -> mark(f(g(f(a())))) r2: active(f(X)) -> f(active(X)) r3: f(mark(X)) -> mark(f(X)) r4: proper(f(X)) -> f(proper(X)) r5: proper(a()) -> ok(a()) r6: proper(g(X)) -> g(proper(X)) r7: f(ok(X)) -> ok(f(X)) r8: g(ok(X)) -> ok(g(X)) r9: top(mark(X)) -> top(proper(X)) r10: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: proper#_A(x1) = x1 g_A(x1) = x1 + 1 f_A(x1) = x1 + 1 2. lexicographic path order with precedence: precedence: proper# > f > g argument filter: pi(proper#) = 1 pi(g) = [1] pi(f) = [1] The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(mark(X)) -> f#(X) p2: f#(ok(X)) -> f#(X) and R consists of: r1: active(f(f(a()))) -> mark(f(g(f(a())))) r2: active(f(X)) -> f(active(X)) r3: f(mark(X)) -> mark(f(X)) r4: proper(f(X)) -> f(proper(X)) r5: proper(a()) -> ok(a()) r6: proper(g(X)) -> g(proper(X)) r7: f(ok(X)) -> ok(f(X)) r8: g(ok(X)) -> ok(g(X)) r9: top(mark(X)) -> top(proper(X)) r10: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: f#_A(x1) = x1 mark_A(x1) = x1 + 1 ok_A(x1) = x1 + 1 2. lexicographic path order with precedence: precedence: f# > ok > mark argument filter: pi(f#) = 1 pi(mark) = [1] pi(ok) = [1] The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: g#(ok(X)) -> g#(X) and R consists of: r1: active(f(f(a()))) -> mark(f(g(f(a())))) r2: active(f(X)) -> f(active(X)) r3: f(mark(X)) -> mark(f(X)) r4: proper(f(X)) -> f(proper(X)) r5: proper(a()) -> ok(a()) r6: proper(g(X)) -> g(proper(X)) r7: f(ok(X)) -> ok(f(X)) r8: g(ok(X)) -> ok(g(X)) r9: top(mark(X)) -> top(proper(X)) r10: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: g#_A(x1) = x1 ok_A(x1) = x1 + 1 2. lexicographic path order with precedence: precedence: ok > g# argument filter: pi(g#) = 1 pi(ok) = [1] The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10 We remove them from the problem. Then no dependency pair remains.