YES We show the termination of the TRS R: a__f(f(a())) -> a__f(g(f(a()))) mark(f(X)) -> a__f(X) mark(a()) -> a() mark(g(X)) -> g(mark(X)) a__f(X) -> f(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__f#(f(a())) -> a__f#(g(f(a()))) p2: mark#(f(X)) -> a__f#(X) p3: mark#(g(X)) -> mark#(X) and R consists of: r1: a__f(f(a())) -> a__f(g(f(a()))) r2: mark(f(X)) -> a__f(X) r3: mark(a()) -> a() r4: mark(g(X)) -> g(mark(X)) r5: a__f(X) -> f(X) The estimated dependency graph contains the following SCCs: {p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(g(X)) -> mark#(X) and R consists of: r1: a__f(f(a())) -> a__f(g(f(a()))) r2: mark(f(X)) -> a__f(X) r3: mark(a()) -> a() r4: mark(g(X)) -> g(mark(X)) r5: a__f(X) -> f(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: mark#_A(x1) = x1 g_A(x1) = x1 + 1 2. lexicographic path order with precedence: precedence: g > mark# argument filter: pi(mark#) = 1 pi(g) = [1] The next rules are strictly ordered: p1 r1, r2, r3, r4, r5 We remove them from the problem. Then no dependency pair remains.