YES We show the termination of the TRS R: f(n__f(n__a())) -> f(n__g(n__f(n__a()))) f(X) -> n__f(X) a() -> n__a() g(X) -> n__g(X) activate(n__f(X)) -> f(X) activate(n__a()) -> a() activate(n__g(X)) -> g(activate(X)) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(n__f(n__a())) -> f#(n__g(n__f(n__a()))) p2: activate#(n__f(X)) -> f#(X) p3: activate#(n__a()) -> a#() p4: activate#(n__g(X)) -> g#(activate(X)) p5: activate#(n__g(X)) -> activate#(X) and R consists of: r1: f(n__f(n__a())) -> f(n__g(n__f(n__a()))) r2: f(X) -> n__f(X) r3: a() -> n__a() r4: g(X) -> n__g(X) r5: activate(n__f(X)) -> f(X) r6: activate(n__a()) -> a() r7: activate(n__g(X)) -> g(activate(X)) r8: activate(X) -> X The estimated dependency graph contains the following SCCs: {p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__g(X)) -> activate#(X) and R consists of: r1: f(n__f(n__a())) -> f(n__g(n__f(n__a()))) r2: f(X) -> n__f(X) r3: a() -> n__a() r4: g(X) -> n__g(X) r5: activate(n__f(X)) -> f(X) r6: activate(n__a()) -> a() r7: activate(n__g(X)) -> g(activate(X)) r8: activate(X) -> X The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: activate#_A(x1) = x1 n__g_A(x1) = x1 + 1 2. lexicographic path order with precedence: precedence: n__g > activate# argument filter: pi(activate#) = 1 pi(n__g) = [1] The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8 We remove them from the problem. Then no dependency pair remains.