YES We show the termination of the TRS R: D(t()) -> s(h()) D(constant()) -> h() D(b(x,y)) -> b(D(x),D(y)) D(c(x,y)) -> b(c(y,D(x)),c(x,D(y))) D(m(x,y)) -> m(D(x),D(y)) D(opp(x)) -> opp(D(x)) D(div(x,y)) -> m(div(D(x),y),div(c(x,D(y)),pow(y,|2|()))) D(ln(x)) -> div(D(x),x) D(pow(x,y)) -> b(c(c(y,pow(x,m(y,|1|()))),D(x)),c(c(pow(x,y),ln(x)),D(y))) b(h(),x) -> x b(x,h()) -> x b(s(x),s(y)) -> s(s(b(x,y))) b(b(x,y),z) -> b(x,b(y,z)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: D#(b(x,y)) -> b#(D(x),D(y)) p2: D#(b(x,y)) -> D#(x) p3: D#(b(x,y)) -> D#(y) p4: D#(c(x,y)) -> b#(c(y,D(x)),c(x,D(y))) p5: D#(c(x,y)) -> D#(x) p6: D#(c(x,y)) -> D#(y) p7: D#(m(x,y)) -> D#(x) p8: D#(m(x,y)) -> D#(y) p9: D#(opp(x)) -> D#(x) p10: D#(div(x,y)) -> D#(x) p11: D#(div(x,y)) -> D#(y) p12: D#(ln(x)) -> D#(x) p13: D#(pow(x,y)) -> b#(c(c(y,pow(x,m(y,|1|()))),D(x)),c(c(pow(x,y),ln(x)),D(y))) p14: D#(pow(x,y)) -> D#(x) p15: D#(pow(x,y)) -> D#(y) p16: b#(s(x),s(y)) -> b#(x,y) p17: b#(b(x,y),z) -> b#(x,b(y,z)) p18: b#(b(x,y),z) -> b#(y,z) and R consists of: r1: D(t()) -> s(h()) r2: D(constant()) -> h() r3: D(b(x,y)) -> b(D(x),D(y)) r4: D(c(x,y)) -> b(c(y,D(x)),c(x,D(y))) r5: D(m(x,y)) -> m(D(x),D(y)) r6: D(opp(x)) -> opp(D(x)) r7: D(div(x,y)) -> m(div(D(x),y),div(c(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> b(c(c(y,pow(x,m(y,|1|()))),D(x)),c(c(pow(x,y),ln(x)),D(y))) r10: b(h(),x) -> x r11: b(x,h()) -> x r12: b(s(x),s(y)) -> s(s(b(x,y))) r13: b(b(x,y),z) -> b(x,b(y,z)) The estimated dependency graph contains the following SCCs: {p2, p3, p5, p6, p7, p8, p9, p10, p11, p12, p14, p15} {p16, p17, p18} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: D#(pow(x,y)) -> D#(y) p2: D#(pow(x,y)) -> D#(x) p3: D#(ln(x)) -> D#(x) p4: D#(div(x,y)) -> D#(y) p5: D#(div(x,y)) -> D#(x) p6: D#(opp(x)) -> D#(x) p7: D#(m(x,y)) -> D#(y) p8: D#(m(x,y)) -> D#(x) p9: D#(c(x,y)) -> D#(y) p10: D#(c(x,y)) -> D#(x) p11: D#(b(x,y)) -> D#(y) p12: D#(b(x,y)) -> D#(x) and R consists of: r1: D(t()) -> s(h()) r2: D(constant()) -> h() r3: D(b(x,y)) -> b(D(x),D(y)) r4: D(c(x,y)) -> b(c(y,D(x)),c(x,D(y))) r5: D(m(x,y)) -> m(D(x),D(y)) r6: D(opp(x)) -> opp(D(x)) r7: D(div(x,y)) -> m(div(D(x),y),div(c(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> b(c(c(y,pow(x,m(y,|1|()))),D(x)),c(c(pow(x,y),ln(x)),D(y))) r10: b(h(),x) -> x r11: b(x,h()) -> x r12: b(s(x),s(y)) -> s(s(b(x,y))) r13: b(b(x,y),z) -> b(x,b(y,z)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: D#_A(x1) = x1 pow_A(x1,x2) = x1 + x2 + 1 ln_A(x1) = x1 + 1 div_A(x1,x2) = x1 + x2 + 1 opp_A(x1) = x1 + 1 m_A(x1,x2) = x1 + x2 + 1 c_A(x1,x2) = x1 + x2 + 1 b_A(x1,x2) = x1 + x2 + 1 2. lexicographic path order with precedence: precedence: D# > b > c > m > opp > div > ln > pow argument filter: pi(D#) = 1 pi(pow) = [1, 2] pi(ln) = [1] pi(div) = [1, 2] pi(opp) = [1] pi(m) = [1, 2] pi(c) = [1, 2] pi(b) = [1, 2] The next rules are strictly ordered: p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: b#(s(x),s(y)) -> b#(x,y) p2: b#(b(x,y),z) -> b#(y,z) p3: b#(b(x,y),z) -> b#(x,b(y,z)) and R consists of: r1: D(t()) -> s(h()) r2: D(constant()) -> h() r3: D(b(x,y)) -> b(D(x),D(y)) r4: D(c(x,y)) -> b(c(y,D(x)),c(x,D(y))) r5: D(m(x,y)) -> m(D(x),D(y)) r6: D(opp(x)) -> opp(D(x)) r7: D(div(x,y)) -> m(div(D(x),y),div(c(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> b(c(c(y,pow(x,m(y,|1|()))),D(x)),c(c(pow(x,y),ln(x)),D(y))) r10: b(h(),x) -> x r11: b(x,h()) -> x r12: b(s(x),s(y)) -> s(s(b(x,y))) r13: b(b(x,y),z) -> b(x,b(y,z)) The set of usable rules consists of r10, r11, r12, r13 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: b#_A(x1,x2) = x1 + x2 s_A(x1) = x1 + 1 b_A(x1,x2) = x1 + x2 + 1 h_A() = 0 2. lexicographic path order with precedence: precedence: h > b# > b > s argument filter: pi(b#) = 1 pi(s) = [1] pi(b) = [1] pi(h) = [] The next rules are strictly ordered: p1, p2, p3 We remove them from the problem. Then no dependency pair remains.