YES We show the termination of the TRS R: double(|0|()) -> |0|() double(s(x)) -> s(s(double(x))) half(|0|()) -> |0|() half(s(|0|())) -> |0|() half(s(s(x))) -> s(half(x)) -(x,|0|()) -> x -(s(x),s(y)) -> -(x,y) if(|0|(),y,z) -> y if(s(x),y,z) -> z half(double(x)) -> x -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: double#(s(x)) -> double#(x) p2: half#(s(s(x))) -> half#(x) p3: -#(s(x),s(y)) -> -#(x,y) and R consists of: r1: double(|0|()) -> |0|() r2: double(s(x)) -> s(s(double(x))) r3: half(|0|()) -> |0|() r4: half(s(|0|())) -> |0|() r5: half(s(s(x))) -> s(half(x)) r6: -(x,|0|()) -> x r7: -(s(x),s(y)) -> -(x,y) r8: if(|0|(),y,z) -> y r9: if(s(x),y,z) -> z r10: half(double(x)) -> x The estimated dependency graph contains the following SCCs: {p1} {p2} {p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: double#(s(x)) -> double#(x) and R consists of: r1: double(|0|()) -> |0|() r2: double(s(x)) -> s(s(double(x))) r3: half(|0|()) -> |0|() r4: half(s(|0|())) -> |0|() r5: half(s(s(x))) -> s(half(x)) r6: -(x,|0|()) -> x r7: -(s(x),s(y)) -> -(x,y) r8: if(|0|(),y,z) -> y r9: if(s(x),y,z) -> z r10: half(double(x)) -> x The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: double#_A(x1) = x1 s_A(x1) = x1 + 1 2. lexicographic path order with precedence: precedence: s > double# argument filter: pi(double#) = 1 pi(s) = [1] The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: half#(s(s(x))) -> half#(x) and R consists of: r1: double(|0|()) -> |0|() r2: double(s(x)) -> s(s(double(x))) r3: half(|0|()) -> |0|() r4: half(s(|0|())) -> |0|() r5: half(s(s(x))) -> s(half(x)) r6: -(x,|0|()) -> x r7: -(s(x),s(y)) -> -(x,y) r8: if(|0|(),y,z) -> y r9: if(s(x),y,z) -> z r10: half(double(x)) -> x The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: half#_A(x1) = x1 s_A(x1) = x1 + 1 2. lexicographic path order with precedence: precedence: s > half# argument filter: pi(half#) = [1] pi(s) = [1] The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: -#(s(x),s(y)) -> -#(x,y) and R consists of: r1: double(|0|()) -> |0|() r2: double(s(x)) -> s(s(double(x))) r3: half(|0|()) -> |0|() r4: half(s(|0|())) -> |0|() r5: half(s(s(x))) -> s(half(x)) r6: -(x,|0|()) -> x r7: -(s(x),s(y)) -> -(x,y) r8: if(|0|(),y,z) -> y r9: if(s(x),y,z) -> z r10: half(double(x)) -> x The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: -#_A(x1,x2) = x1 + x2 s_A(x1) = x1 + 1 2. lexicographic path order with precedence: precedence: s > -# argument filter: pi(-#) = [] pi(s) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.