YES

We show the termination of the TRS R:

  minus(minus(x)) -> x
  minus(h(x)) -> h(minus(x))
  minus(f(x,y)) -> f(minus(y),minus(x))

-- SCC decomposition.

Consider the dependency pair problem (P, R), where P consists of

p1: minus#(h(x)) -> minus#(x)
p2: minus#(f(x,y)) -> minus#(y)
p3: minus#(f(x,y)) -> minus#(x)

and R consists of:

r1: minus(minus(x)) -> x
r2: minus(h(x)) -> h(minus(x))
r3: minus(f(x,y)) -> f(minus(y),minus(x))

The estimated dependency graph contains the following SCCs:

  {p1, p2, p3}


-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: minus#(h(x)) -> minus#(x)
p2: minus#(f(x,y)) -> minus#(x)
p3: minus#(f(x,y)) -> minus#(y)

and R consists of:

r1: minus(minus(x)) -> x
r2: minus(h(x)) -> h(minus(x))
r3: minus(f(x,y)) -> f(minus(y),minus(x))

The set of usable rules consists of

  (no rules)

Take the monotone reduction pair:

  lexicographic combination of reduction pairs:
  
    1. matrix interpretations:
    
      carrier: N^1
      order: standard order
      interpretations:
        minus#_A(x1) = x1
        h_A(x1) = x1 + 1
        f_A(x1,x2) = x1 + x2 + 1
    
    2. lexicographic path order with precedence:
    
      precedence:
      
        f > h > minus#
      
      argument filter:
    
        pi(minus#) = [1]
        pi(h) = [1]
        pi(f) = [1, 2]
    

The next rules are strictly ordered:

  p1, p2, p3
  r1, r2, r3

We remove them from the problem.  Then no dependency pair remains.