YES We show the termination of the TRS R: plus(s(X),plus(Y,Z)) -> plus(X,plus(s(s(Y)),Z)) plus(s(X1),plus(X2,plus(X3,X4))) -> plus(X1,plus(X3,plus(X2,X4))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: plus#(s(X),plus(Y,Z)) -> plus#(X,plus(s(s(Y)),Z)) p2: plus#(s(X),plus(Y,Z)) -> plus#(s(s(Y)),Z) p3: plus#(s(X1),plus(X2,plus(X3,X4))) -> plus#(X1,plus(X3,plus(X2,X4))) p4: plus#(s(X1),plus(X2,plus(X3,X4))) -> plus#(X3,plus(X2,X4)) p5: plus#(s(X1),plus(X2,plus(X3,X4))) -> plus#(X2,X4) and R consists of: r1: plus(s(X),plus(Y,Z)) -> plus(X,plus(s(s(Y)),Z)) r2: plus(s(X1),plus(X2,plus(X3,X4))) -> plus(X1,plus(X3,plus(X2,X4))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: plus#(s(X),plus(Y,Z)) -> plus#(X,plus(s(s(Y)),Z)) p2: plus#(s(X1),plus(X2,plus(X3,X4))) -> plus#(X2,X4) p3: plus#(s(X1),plus(X2,plus(X3,X4))) -> plus#(X3,plus(X2,X4)) p4: plus#(s(X1),plus(X2,plus(X3,X4))) -> plus#(X1,plus(X3,plus(X2,X4))) p5: plus#(s(X),plus(Y,Z)) -> plus#(s(s(Y)),Z) and R consists of: r1: plus(s(X),plus(Y,Z)) -> plus(X,plus(s(s(Y)),Z)) r2: plus(s(X1),plus(X2,plus(X3,X4))) -> plus(X1,plus(X3,plus(X2,X4))) The set of usable rules consists of r1, r2 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: plus#_A(x1,x2) = x1 + x2 s_A(x1) = x1 plus_A(x1,x2) = x1 + x2 + 1 2. lexicographic path order with precedence: precedence: plus > s > plus# argument filter: pi(plus#) = 1 pi(s) = [1] pi(plus) = [2] The next rules are strictly ordered: p1, p2, p3, p4, p5 We remove them from the problem. Then no dependency pair remains.