YES We show the termination of the TRS R: not(not(x)) -> x not(or(x,y)) -> and(not(not(not(x))),not(not(not(y)))) not(and(x,y)) -> or(not(not(not(x))),not(not(not(y)))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: not#(or(x,y)) -> not#(not(not(x))) p2: not#(or(x,y)) -> not#(not(x)) p3: not#(or(x,y)) -> not#(x) p4: not#(or(x,y)) -> not#(not(not(y))) p5: not#(or(x,y)) -> not#(not(y)) p6: not#(or(x,y)) -> not#(y) p7: not#(and(x,y)) -> not#(not(not(x))) p8: not#(and(x,y)) -> not#(not(x)) p9: not#(and(x,y)) -> not#(x) p10: not#(and(x,y)) -> not#(not(not(y))) p11: not#(and(x,y)) -> not#(not(y)) p12: not#(and(x,y)) -> not#(y) and R consists of: r1: not(not(x)) -> x r2: not(or(x,y)) -> and(not(not(not(x))),not(not(not(y)))) r3: not(and(x,y)) -> or(not(not(not(x))),not(not(not(y)))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: not#(or(x,y)) -> not#(not(not(x))) p2: not#(and(x,y)) -> not#(y) p3: not#(and(x,y)) -> not#(not(y)) p4: not#(and(x,y)) -> not#(not(not(y))) p5: not#(and(x,y)) -> not#(x) p6: not#(and(x,y)) -> not#(not(x)) p7: not#(and(x,y)) -> not#(not(not(x))) p8: not#(or(x,y)) -> not#(y) p9: not#(or(x,y)) -> not#(not(y)) p10: not#(or(x,y)) -> not#(not(not(y))) p11: not#(or(x,y)) -> not#(x) p12: not#(or(x,y)) -> not#(not(x)) and R consists of: r1: not(not(x)) -> x r2: not(or(x,y)) -> and(not(not(not(x))),not(not(not(y)))) r3: not(and(x,y)) -> or(not(not(not(x))),not(not(not(y)))) The set of usable rules consists of r1, r2, r3 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: not#_A(x1) = x1 or_A(x1,x2) = x1 + x2 + 1 not_A(x1) = x1 and_A(x1,x2) = x1 + x2 + 1 2. lexicographic path order with precedence: precedence: not > or > and > not# argument filter: pi(not#) = [] pi(or) = [] pi(not) = [1] pi(and) = [] The next rules are strictly ordered: p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12 We remove them from the problem. Then no dependency pair remains.