YES

We show the termination of the TRS R:

  app(app(plus(),|0|()),y) -> y
  app(app(plus(),app(s(),x)),y) -> app(s(),app(app(plus(),x),y))
  app(inc(),xs) -> app(app(map(),app(plus(),app(s(),|0|()))),xs)
  app(app(map(),f),nil()) -> nil()
  app(app(map(),f),app(app(cons(),x),xs)) -> app(app(cons(),app(f,x)),app(app(map(),f),xs))

-- SCC decomposition.

Consider the dependency pair problem (P, R), where P consists of

p1: app#(app(plus(),app(s(),x)),y) -> app#(s(),app(app(plus(),x),y))
p2: app#(app(plus(),app(s(),x)),y) -> app#(app(plus(),x),y)
p3: app#(app(plus(),app(s(),x)),y) -> app#(plus(),x)
p4: app#(inc(),xs) -> app#(app(map(),app(plus(),app(s(),|0|()))),xs)
p5: app#(inc(),xs) -> app#(map(),app(plus(),app(s(),|0|())))
p6: app#(inc(),xs) -> app#(plus(),app(s(),|0|()))
p7: app#(inc(),xs) -> app#(s(),|0|())
p8: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(app(cons(),app(f,x)),app(app(map(),f),xs))
p9: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(cons(),app(f,x))
p10: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(f,x)
p11: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(app(map(),f),xs)

and R consists of:

r1: app(app(plus(),|0|()),y) -> y
r2: app(app(plus(),app(s(),x)),y) -> app(s(),app(app(plus(),x),y))
r3: app(inc(),xs) -> app(app(map(),app(plus(),app(s(),|0|()))),xs)
r4: app(app(map(),f),nil()) -> nil()
r5: app(app(map(),f),app(app(cons(),x),xs)) -> app(app(cons(),app(f,x)),app(app(map(),f),xs))

The estimated dependency graph contains the following SCCs:

  {p4, p10, p11}
  {p2}


-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(f,x)
p2: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(app(map(),f),xs)
p3: app#(inc(),xs) -> app#(app(map(),app(plus(),app(s(),|0|()))),xs)

and R consists of:

r1: app(app(plus(),|0|()),y) -> y
r2: app(app(plus(),app(s(),x)),y) -> app(s(),app(app(plus(),x),y))
r3: app(inc(),xs) -> app(app(map(),app(plus(),app(s(),|0|()))),xs)
r4: app(app(map(),f),nil()) -> nil()
r5: app(app(map(),f),app(app(cons(),x),xs)) -> app(app(cons(),app(f,x)),app(app(map(),f),xs))

The set of usable rules consists of

  (no rules)

Take the reduction pair:

  lexicographic combination of reduction pairs:
  
    1. matrix interpretations:
    
      carrier: N^1
      order: standard order
      interpretations:
        app#_A(x1,x2) = x1 + x2
        app_A(x1,x2) = x1 + x2
        map_A() = 1
        cons_A() = 1
        inc_A() = 4
        plus_A() = 1
        s_A() = 1
        |0|_A() = 0
    
    2. lexicographic path order with precedence:
    
      precedence:
      
        |0| > s > plus > app# > app > map > inc > cons
      
      argument filter:
    
        pi(app#) = 2
        pi(app) = [1, 2]
        pi(map) = []
        pi(cons) = []
        pi(inc) = []
        pi(plus) = []
        pi(s) = []
        pi(|0|) = []
    

The next rules are strictly ordered:

  p1, p2, p3

We remove them from the problem.  Then no dependency pair remains.

-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: app#(app(plus(),app(s(),x)),y) -> app#(app(plus(),x),y)

and R consists of:

r1: app(app(plus(),|0|()),y) -> y
r2: app(app(plus(),app(s(),x)),y) -> app(s(),app(app(plus(),x),y))
r3: app(inc(),xs) -> app(app(map(),app(plus(),app(s(),|0|()))),xs)
r4: app(app(map(),f),nil()) -> nil()
r5: app(app(map(),f),app(app(cons(),x),xs)) -> app(app(cons(),app(f,x)),app(app(map(),f),xs))

The set of usable rules consists of

  (no rules)

Take the reduction pair:

  lexicographic combination of reduction pairs:
  
    1. matrix interpretations:
    
      carrier: N^1
      order: standard order
      interpretations:
        app#_A(x1,x2) = x1
        app_A(x1,x2) = x2 + 1
        plus_A() = 0
        s_A() = 1
    
    2. lexicographic path order with precedence:
    
      precedence:
      
        plus > app# > app > s
      
      argument filter:
    
        pi(app#) = 1
        pi(app) = [2]
        pi(plus) = []
        pi(s) = []
    

The next rules are strictly ordered:

  p1

We remove them from the problem.  Then no dependency pair remains.