YES We show the termination of the TRS R: __(__(X,Y),Z) -> __(X,__(Y,Z)) __(X,nil()) -> X __(nil(),X) -> X U11(tt(),V) -> U12(isNeList(activate(V))) U12(tt()) -> tt() U21(tt(),V1,V2) -> U22(isList(activate(V1)),activate(V2)) U22(tt(),V2) -> U23(isList(activate(V2))) U23(tt()) -> tt() U31(tt(),V) -> U32(isQid(activate(V))) U32(tt()) -> tt() U41(tt(),V1,V2) -> U42(isList(activate(V1)),activate(V2)) U42(tt(),V2) -> U43(isNeList(activate(V2))) U43(tt()) -> tt() U51(tt(),V1,V2) -> U52(isNeList(activate(V1)),activate(V2)) U52(tt(),V2) -> U53(isList(activate(V2))) U53(tt()) -> tt() U61(tt(),V) -> U62(isQid(activate(V))) U62(tt()) -> tt() U71(tt(),V) -> U72(isNePal(activate(V))) U72(tt()) -> tt() and(tt(),X) -> activate(X) isList(V) -> U11(isPalListKind(activate(V)),activate(V)) isList(n__nil()) -> tt() isList(n____(V1,V2)) -> U21(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) isNeList(V) -> U31(isPalListKind(activate(V)),activate(V)) isNeList(n____(V1,V2)) -> U41(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) isNeList(n____(V1,V2)) -> U51(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) isNePal(V) -> U61(isPalListKind(activate(V)),activate(V)) isNePal(n____(I,__(P,I))) -> and(and(isQid(activate(I)),n__isPalListKind(activate(I))),n__and(isPal(activate(P)),n__isPalListKind(activate(P)))) isPal(V) -> U71(isPalListKind(activate(V)),activate(V)) isPal(n__nil()) -> tt() isPalListKind(n__a()) -> tt() isPalListKind(n__e()) -> tt() isPalListKind(n__i()) -> tt() isPalListKind(n__nil()) -> tt() isPalListKind(n__o()) -> tt() isPalListKind(n__u()) -> tt() isPalListKind(n____(V1,V2)) -> and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))) isQid(n__a()) -> tt() isQid(n__e()) -> tt() isQid(n__i()) -> tt() isQid(n__o()) -> tt() isQid(n__u()) -> tt() nil() -> n__nil() __(X1,X2) -> n____(X1,X2) isPalListKind(X) -> n__isPalListKind(X) and(X1,X2) -> n__and(X1,X2) a() -> n__a() e() -> n__e() i() -> n__i() o() -> n__o() u() -> n__u() activate(n__nil()) -> nil() activate(n____(X1,X2)) -> __(X1,X2) activate(n__isPalListKind(X)) -> isPalListKind(X) activate(n__and(X1,X2)) -> and(X1,X2) activate(n__a()) -> a() activate(n__e()) -> e() activate(n__i()) -> i() activate(n__o()) -> o() activate(n__u()) -> u() activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: __#(__(X,Y),Z) -> __#(X,__(Y,Z)) p2: __#(__(X,Y),Z) -> __#(Y,Z) p3: U11#(tt(),V) -> U12#(isNeList(activate(V))) p4: U11#(tt(),V) -> isNeList#(activate(V)) p5: U11#(tt(),V) -> activate#(V) p6: U21#(tt(),V1,V2) -> U22#(isList(activate(V1)),activate(V2)) p7: U21#(tt(),V1,V2) -> isList#(activate(V1)) p8: U21#(tt(),V1,V2) -> activate#(V1) p9: U21#(tt(),V1,V2) -> activate#(V2) p10: U22#(tt(),V2) -> U23#(isList(activate(V2))) p11: U22#(tt(),V2) -> isList#(activate(V2)) p12: U22#(tt(),V2) -> activate#(V2) p13: U31#(tt(),V) -> U32#(isQid(activate(V))) p14: U31#(tt(),V) -> isQid#(activate(V)) p15: U31#(tt(),V) -> activate#(V) p16: U41#(tt(),V1,V2) -> U42#(isList(activate(V1)),activate(V2)) p17: U41#(tt(),V1,V2) -> isList#(activate(V1)) p18: U41#(tt(),V1,V2) -> activate#(V1) p19: U41#(tt(),V1,V2) -> activate#(V2) p20: U42#(tt(),V2) -> U43#(isNeList(activate(V2))) p21: U42#(tt(),V2) -> isNeList#(activate(V2)) p22: U42#(tt(),V2) -> activate#(V2) p23: U51#(tt(),V1,V2) -> U52#(isNeList(activate(V1)),activate(V2)) p24: U51#(tt(),V1,V2) -> isNeList#(activate(V1)) p25: U51#(tt(),V1,V2) -> activate#(V1) p26: U51#(tt(),V1,V2) -> activate#(V2) p27: U52#(tt(),V2) -> U53#(isList(activate(V2))) p28: U52#(tt(),V2) -> isList#(activate(V2)) p29: U52#(tt(),V2) -> activate#(V2) p30: U61#(tt(),V) -> U62#(isQid(activate(V))) p31: U61#(tt(),V) -> isQid#(activate(V)) p32: U61#(tt(),V) -> activate#(V) p33: U71#(tt(),V) -> U72#(isNePal(activate(V))) p34: U71#(tt(),V) -> isNePal#(activate(V)) p35: U71#(tt(),V) -> activate#(V) p36: and#(tt(),X) -> activate#(X) p37: isList#(V) -> U11#(isPalListKind(activate(V)),activate(V)) p38: isList#(V) -> isPalListKind#(activate(V)) p39: isList#(V) -> activate#(V) p40: isList#(n____(V1,V2)) -> U21#(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) p41: isList#(n____(V1,V2)) -> and#(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))) p42: isList#(n____(V1,V2)) -> isPalListKind#(activate(V1)) p43: isList#(n____(V1,V2)) -> activate#(V1) p44: isList#(n____(V1,V2)) -> activate#(V2) p45: isNeList#(V) -> U31#(isPalListKind(activate(V)),activate(V)) p46: isNeList#(V) -> isPalListKind#(activate(V)) p47: isNeList#(V) -> activate#(V) p48: isNeList#(n____(V1,V2)) -> U41#(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) p49: isNeList#(n____(V1,V2)) -> and#(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))) p50: isNeList#(n____(V1,V2)) -> isPalListKind#(activate(V1)) p51: isNeList#(n____(V1,V2)) -> activate#(V1) p52: isNeList#(n____(V1,V2)) -> activate#(V2) p53: isNeList#(n____(V1,V2)) -> U51#(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) p54: isNeList#(n____(V1,V2)) -> and#(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))) p55: isNeList#(n____(V1,V2)) -> isPalListKind#(activate(V1)) p56: isNeList#(n____(V1,V2)) -> activate#(V1) p57: isNeList#(n____(V1,V2)) -> activate#(V2) p58: isNePal#(V) -> U61#(isPalListKind(activate(V)),activate(V)) p59: isNePal#(V) -> isPalListKind#(activate(V)) p60: isNePal#(V) -> activate#(V) p61: isNePal#(n____(I,__(P,I))) -> and#(and(isQid(activate(I)),n__isPalListKind(activate(I))),n__and(isPal(activate(P)),n__isPalListKind(activate(P)))) p62: isNePal#(n____(I,__(P,I))) -> and#(isQid(activate(I)),n__isPalListKind(activate(I))) p63: isNePal#(n____(I,__(P,I))) -> isQid#(activate(I)) p64: isNePal#(n____(I,__(P,I))) -> activate#(I) p65: isNePal#(n____(I,__(P,I))) -> isPal#(activate(P)) p66: isNePal#(n____(I,__(P,I))) -> activate#(P) p67: isPal#(V) -> U71#(isPalListKind(activate(V)),activate(V)) p68: isPal#(V) -> isPalListKind#(activate(V)) p69: isPal#(V) -> activate#(V) p70: isPalListKind#(n____(V1,V2)) -> and#(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))) p71: isPalListKind#(n____(V1,V2)) -> isPalListKind#(activate(V1)) p72: isPalListKind#(n____(V1,V2)) -> activate#(V1) p73: isPalListKind#(n____(V1,V2)) -> activate#(V2) p74: activate#(n__nil()) -> nil#() p75: activate#(n____(X1,X2)) -> __#(X1,X2) p76: activate#(n__isPalListKind(X)) -> isPalListKind#(X) p77: activate#(n__and(X1,X2)) -> and#(X1,X2) p78: activate#(n__a()) -> a#() p79: activate#(n__e()) -> e#() p80: activate#(n__i()) -> i#() p81: activate#(n__o()) -> o#() p82: activate#(n__u()) -> u#() and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt(),V) -> U12(isNeList(activate(V))) r5: U12(tt()) -> tt() r6: U21(tt(),V1,V2) -> U22(isList(activate(V1)),activate(V2)) r7: U22(tt(),V2) -> U23(isList(activate(V2))) r8: U23(tt()) -> tt() r9: U31(tt(),V) -> U32(isQid(activate(V))) r10: U32(tt()) -> tt() r11: U41(tt(),V1,V2) -> U42(isList(activate(V1)),activate(V2)) r12: U42(tt(),V2) -> U43(isNeList(activate(V2))) r13: U43(tt()) -> tt() r14: U51(tt(),V1,V2) -> U52(isNeList(activate(V1)),activate(V2)) r15: U52(tt(),V2) -> U53(isList(activate(V2))) r16: U53(tt()) -> tt() r17: U61(tt(),V) -> U62(isQid(activate(V))) r18: U62(tt()) -> tt() r19: U71(tt(),V) -> U72(isNePal(activate(V))) r20: U72(tt()) -> tt() r21: and(tt(),X) -> activate(X) r22: isList(V) -> U11(isPalListKind(activate(V)),activate(V)) r23: isList(n__nil()) -> tt() r24: isList(n____(V1,V2)) -> U21(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) r25: isNeList(V) -> U31(isPalListKind(activate(V)),activate(V)) r26: isNeList(n____(V1,V2)) -> U41(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) r27: isNeList(n____(V1,V2)) -> U51(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) r28: isNePal(V) -> U61(isPalListKind(activate(V)),activate(V)) r29: isNePal(n____(I,__(P,I))) -> and(and(isQid(activate(I)),n__isPalListKind(activate(I))),n__and(isPal(activate(P)),n__isPalListKind(activate(P)))) r30: isPal(V) -> U71(isPalListKind(activate(V)),activate(V)) r31: isPal(n__nil()) -> tt() r32: isPalListKind(n__a()) -> tt() r33: isPalListKind(n__e()) -> tt() r34: isPalListKind(n__i()) -> tt() r35: isPalListKind(n__nil()) -> tt() r36: isPalListKind(n__o()) -> tt() r37: isPalListKind(n__u()) -> tt() r38: isPalListKind(n____(V1,V2)) -> and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))) r39: isQid(n__a()) -> tt() r40: isQid(n__e()) -> tt() r41: isQid(n__i()) -> tt() r42: isQid(n__o()) -> tt() r43: isQid(n__u()) -> tt() r44: nil() -> n__nil() r45: __(X1,X2) -> n____(X1,X2) r46: isPalListKind(X) -> n__isPalListKind(X) r47: and(X1,X2) -> n__and(X1,X2) r48: a() -> n__a() r49: e() -> n__e() r50: i() -> n__i() r51: o() -> n__o() r52: u() -> n__u() r53: activate(n__nil()) -> nil() r54: activate(n____(X1,X2)) -> __(X1,X2) r55: activate(n__isPalListKind(X)) -> isPalListKind(X) r56: activate(n__and(X1,X2)) -> and(X1,X2) r57: activate(n__a()) -> a() r58: activate(n__e()) -> e() r59: activate(n__i()) -> i() r60: activate(n__o()) -> o() r61: activate(n__u()) -> u() r62: activate(X) -> X The estimated dependency graph contains the following SCCs: {p34, p65, p67} {p4, p6, p7, p11, p16, p17, p21, p23, p24, p28, p37, p40, p48, p53} {p36, p70, p71, p72, p73, p76, p77} {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNePal#(n____(I,__(P,I))) -> isPal#(activate(P)) p2: isPal#(V) -> U71#(isPalListKind(activate(V)),activate(V)) p3: U71#(tt(),V) -> isNePal#(activate(V)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt(),V) -> U12(isNeList(activate(V))) r5: U12(tt()) -> tt() r6: U21(tt(),V1,V2) -> U22(isList(activate(V1)),activate(V2)) r7: U22(tt(),V2) -> U23(isList(activate(V2))) r8: U23(tt()) -> tt() r9: U31(tt(),V) -> U32(isQid(activate(V))) r10: U32(tt()) -> tt() r11: U41(tt(),V1,V2) -> U42(isList(activate(V1)),activate(V2)) r12: U42(tt(),V2) -> U43(isNeList(activate(V2))) r13: U43(tt()) -> tt() r14: U51(tt(),V1,V2) -> U52(isNeList(activate(V1)),activate(V2)) r15: U52(tt(),V2) -> U53(isList(activate(V2))) r16: U53(tt()) -> tt() r17: U61(tt(),V) -> U62(isQid(activate(V))) r18: U62(tt()) -> tt() r19: U71(tt(),V) -> U72(isNePal(activate(V))) r20: U72(tt()) -> tt() r21: and(tt(),X) -> activate(X) r22: isList(V) -> U11(isPalListKind(activate(V)),activate(V)) r23: isList(n__nil()) -> tt() r24: isList(n____(V1,V2)) -> U21(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) r25: isNeList(V) -> U31(isPalListKind(activate(V)),activate(V)) r26: isNeList(n____(V1,V2)) -> U41(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) r27: isNeList(n____(V1,V2)) -> U51(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) r28: isNePal(V) -> U61(isPalListKind(activate(V)),activate(V)) r29: isNePal(n____(I,__(P,I))) -> and(and(isQid(activate(I)),n__isPalListKind(activate(I))),n__and(isPal(activate(P)),n__isPalListKind(activate(P)))) r30: isPal(V) -> U71(isPalListKind(activate(V)),activate(V)) r31: isPal(n__nil()) -> tt() r32: isPalListKind(n__a()) -> tt() r33: isPalListKind(n__e()) -> tt() r34: isPalListKind(n__i()) -> tt() r35: isPalListKind(n__nil()) -> tt() r36: isPalListKind(n__o()) -> tt() r37: isPalListKind(n__u()) -> tt() r38: isPalListKind(n____(V1,V2)) -> and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))) r39: isQid(n__a()) -> tt() r40: isQid(n__e()) -> tt() r41: isQid(n__i()) -> tt() r42: isQid(n__o()) -> tt() r43: isQid(n__u()) -> tt() r44: nil() -> n__nil() r45: __(X1,X2) -> n____(X1,X2) r46: isPalListKind(X) -> n__isPalListKind(X) r47: and(X1,X2) -> n__and(X1,X2) r48: a() -> n__a() r49: e() -> n__e() r50: i() -> n__i() r51: o() -> n__o() r52: u() -> n__u() r53: activate(n__nil()) -> nil() r54: activate(n____(X1,X2)) -> __(X1,X2) r55: activate(n__isPalListKind(X)) -> isPalListKind(X) r56: activate(n__and(X1,X2)) -> and(X1,X2) r57: activate(n__a()) -> a() r58: activate(n__e()) -> e() r59: activate(n__i()) -> i() r60: activate(n__o()) -> o() r61: activate(n__u()) -> u() r62: activate(X) -> X The set of usable rules consists of r1, r2, r3, r21, r32, r33, r34, r35, r36, r37, r38, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: isNePal#_A(x1) = x1 n_____A(x1,x2) = x1 + x2 ___A(x1,x2) = x1 + x2 isPal#_A(x1) = x1 activate_A(x1) = x1 U71#_A(x1,x2) = x2 isPalListKind_A(x1) = x1 + 1 tt_A() = 1 nil_A() = 1 and_A(x1,x2) = x2 n__nil_A() = 1 n__and_A(x1,x2) = x2 a_A() = 1 n__a_A() = 1 e_A() = 1 n__e_A() = 1 i_A() = 1 n__i_A() = 1 o_A() = 1 n__o_A() = 1 u_A() = 1 n__u_A() = 1 n__isPalListKind_A(x1) = x1 + 1 2. matrix interpretations: carrier: N^1 order: standard order interpretations: isNePal#_A(x1) = x1 n_____A(x1,x2) = x1 + x2 + 4 ___A(x1,x2) = x1 + x2 + 5 isPal#_A(x1) = x1 + 6 activate_A(x1) = x1 + 2 U71#_A(x1,x2) = x2 + 3 isPalListKind_A(x1) = x1 + 3 tt_A() = 0 nil_A() = 2 and_A(x1,x2) = x2 + 3 n__nil_A() = 1 n__and_A(x1,x2) = x2 + 3 a_A() = 2 n__a_A() = 1 e_A() = 2 n__e_A() = 1 i_A() = 1 n__i_A() = 1 o_A() = 2 n__o_A() = 1 u_A() = 3 n__u_A() = 1 n__isPalListKind_A(x1) = x1 + 1 The next rules are strictly ordered: p1, p2, p3 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U52#(tt(),V2) -> isList#(activate(V2)) p2: isList#(n____(V1,V2)) -> U21#(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) p3: U21#(tt(),V1,V2) -> isList#(activate(V1)) p4: isList#(V) -> U11#(isPalListKind(activate(V)),activate(V)) p5: U11#(tt(),V) -> isNeList#(activate(V)) p6: isNeList#(n____(V1,V2)) -> U51#(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) p7: U51#(tt(),V1,V2) -> isNeList#(activate(V1)) p8: isNeList#(n____(V1,V2)) -> U41#(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) p9: U41#(tt(),V1,V2) -> isList#(activate(V1)) p10: U41#(tt(),V1,V2) -> U42#(isList(activate(V1)),activate(V2)) p11: U42#(tt(),V2) -> isNeList#(activate(V2)) p12: U51#(tt(),V1,V2) -> U52#(isNeList(activate(V1)),activate(V2)) p13: U21#(tt(),V1,V2) -> U22#(isList(activate(V1)),activate(V2)) p14: U22#(tt(),V2) -> isList#(activate(V2)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt(),V) -> U12(isNeList(activate(V))) r5: U12(tt()) -> tt() r6: U21(tt(),V1,V2) -> U22(isList(activate(V1)),activate(V2)) r7: U22(tt(),V2) -> U23(isList(activate(V2))) r8: U23(tt()) -> tt() r9: U31(tt(),V) -> U32(isQid(activate(V))) r10: U32(tt()) -> tt() r11: U41(tt(),V1,V2) -> U42(isList(activate(V1)),activate(V2)) r12: U42(tt(),V2) -> U43(isNeList(activate(V2))) r13: U43(tt()) -> tt() r14: U51(tt(),V1,V2) -> U52(isNeList(activate(V1)),activate(V2)) r15: U52(tt(),V2) -> U53(isList(activate(V2))) r16: U53(tt()) -> tt() r17: U61(tt(),V) -> U62(isQid(activate(V))) r18: U62(tt()) -> tt() r19: U71(tt(),V) -> U72(isNePal(activate(V))) r20: U72(tt()) -> tt() r21: and(tt(),X) -> activate(X) r22: isList(V) -> U11(isPalListKind(activate(V)),activate(V)) r23: isList(n__nil()) -> tt() r24: isList(n____(V1,V2)) -> U21(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) r25: isNeList(V) -> U31(isPalListKind(activate(V)),activate(V)) r26: isNeList(n____(V1,V2)) -> U41(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) r27: isNeList(n____(V1,V2)) -> U51(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) r28: isNePal(V) -> U61(isPalListKind(activate(V)),activate(V)) r29: isNePal(n____(I,__(P,I))) -> and(and(isQid(activate(I)),n__isPalListKind(activate(I))),n__and(isPal(activate(P)),n__isPalListKind(activate(P)))) r30: isPal(V) -> U71(isPalListKind(activate(V)),activate(V)) r31: isPal(n__nil()) -> tt() r32: isPalListKind(n__a()) -> tt() r33: isPalListKind(n__e()) -> tt() r34: isPalListKind(n__i()) -> tt() r35: isPalListKind(n__nil()) -> tt() r36: isPalListKind(n__o()) -> tt() r37: isPalListKind(n__u()) -> tt() r38: isPalListKind(n____(V1,V2)) -> and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))) r39: isQid(n__a()) -> tt() r40: isQid(n__e()) -> tt() r41: isQid(n__i()) -> tt() r42: isQid(n__o()) -> tt() r43: isQid(n__u()) -> tt() r44: nil() -> n__nil() r45: __(X1,X2) -> n____(X1,X2) r46: isPalListKind(X) -> n__isPalListKind(X) r47: and(X1,X2) -> n__and(X1,X2) r48: a() -> n__a() r49: e() -> n__e() r50: i() -> n__i() r51: o() -> n__o() r52: u() -> n__u() r53: activate(n__nil()) -> nil() r54: activate(n____(X1,X2)) -> __(X1,X2) r55: activate(n__isPalListKind(X)) -> isPalListKind(X) r56: activate(n__and(X1,X2)) -> and(X1,X2) r57: activate(n__a()) -> a() r58: activate(n__e()) -> e() r59: activate(n__i()) -> i() r60: activate(n__o()) -> o() r61: activate(n__u()) -> u() r62: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r21, r22, r23, r24, r25, r26, r27, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: U52#_A(x1,x2) = x2 + 9 tt_A() = 1 isList#_A(x1) = x1 + 6 activate_A(x1) = x1 + 2 n_____A(x1,x2) = x1 + x2 + 18 U21#_A(x1,x2,x3) = x2 + x3 + 19 and_A(x1,x2) = x2 + 3 isPalListKind_A(x1) = x1 + 1 n__isPalListKind_A(x1) = x1 U11#_A(x1,x2) = x2 + 3 isNeList#_A(x1) = x1 U51#_A(x1,x2,x3) = x2 + x3 + 12 U41#_A(x1,x2,x3) = x2 + x3 + 13 U42#_A(x1,x2) = x1 + x2 + 2 isList_A(x1) = x1 + 6 isNeList_A(x1) = 5 U22#_A(x1,x2) = x1 + x2 + 8 U23_A(x1) = 2 U43_A(x1) = 2 U53_A(x1) = 2 U12_A(x1) = 2 U22_A(x1,x2) = x1 + 2 U32_A(x1) = 2 U42_A(x1,x2) = 3 U52_A(x1,x2) = 3 isQid_A(x1) = 2 n__a_A() = 1 n__e_A() = 1 n__i_A() = 1 n__o_A() = 1 n__u_A() = 1 ___A(x1,x2) = x1 + x2 + 19 nil_A() = 2 U11_A(x1,x2) = x1 + 2 U21_A(x1,x2,x3) = x1 + x2 + 10 U31_A(x1,x2) = 3 U41_A(x1,x2,x3) = 4 U51_A(x1,x2,x3) = 4 n__nil_A() = 1 a_A() = 2 e_A() = 2 i_A() = 2 o_A() = 2 u_A() = 2 n__and_A(x1,x2) = x2 + 2 2. matrix interpretations: carrier: N^1 order: standard order interpretations: U52#_A(x1,x2) = x2 + 9 tt_A() = 3 isList#_A(x1) = 7 activate_A(x1) = 6 n_____A(x1,x2) = 8 U21#_A(x1,x2,x3) = x3 + 8 and_A(x1,x2) = 1 isPalListKind_A(x1) = 2 n__isPalListKind_A(x1) = x1 + 3 U11#_A(x1,x2) = x2 isNeList#_A(x1) = x1 + 5 U51#_A(x1,x2,x3) = 14 U41#_A(x1,x2,x3) = x2 + 8 U42#_A(x1,x2) = x1 + 7 isList_A(x1) = 2 isNeList_A(x1) = 1 U22#_A(x1,x2) = 9 U23_A(x1) = 5 U43_A(x1) = 2 U53_A(x1) = 4 U12_A(x1) = 4 U22_A(x1,x2) = 4 U32_A(x1) = 1 U42_A(x1,x2) = 1 U52_A(x1,x2) = 3 isQid_A(x1) = 1 n__a_A() = 1 n__e_A() = 8 n__i_A() = 8 n__o_A() = 8 n__u_A() = 8 ___A(x1,x2) = x1 + x2 + 7 nil_A() = 7 U11_A(x1,x2) = 3 U21_A(x1,x2,x3) = 3 U31_A(x1,x2) = 0 U41_A(x1,x2,x3) = 0 U51_A(x1,x2,x3) = 2 n__nil_A() = 8 a_A() = 2 e_A() = 7 i_A() = 7 o_A() = 7 u_A() = 7 n__and_A(x1,x2) = 2 The next rules are strictly ordered: p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isPalListKind#(n____(V1,V2)) -> activate#(V2) p2: activate#(n__and(X1,X2)) -> and#(X1,X2) p3: and#(tt(),X) -> activate#(X) p4: activate#(n__isPalListKind(X)) -> isPalListKind#(X) p5: isPalListKind#(n____(V1,V2)) -> activate#(V1) p6: isPalListKind#(n____(V1,V2)) -> isPalListKind#(activate(V1)) p7: isPalListKind#(n____(V1,V2)) -> and#(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt(),V) -> U12(isNeList(activate(V))) r5: U12(tt()) -> tt() r6: U21(tt(),V1,V2) -> U22(isList(activate(V1)),activate(V2)) r7: U22(tt(),V2) -> U23(isList(activate(V2))) r8: U23(tt()) -> tt() r9: U31(tt(),V) -> U32(isQid(activate(V))) r10: U32(tt()) -> tt() r11: U41(tt(),V1,V2) -> U42(isList(activate(V1)),activate(V2)) r12: U42(tt(),V2) -> U43(isNeList(activate(V2))) r13: U43(tt()) -> tt() r14: U51(tt(),V1,V2) -> U52(isNeList(activate(V1)),activate(V2)) r15: U52(tt(),V2) -> U53(isList(activate(V2))) r16: U53(tt()) -> tt() r17: U61(tt(),V) -> U62(isQid(activate(V))) r18: U62(tt()) -> tt() r19: U71(tt(),V) -> U72(isNePal(activate(V))) r20: U72(tt()) -> tt() r21: and(tt(),X) -> activate(X) r22: isList(V) -> U11(isPalListKind(activate(V)),activate(V)) r23: isList(n__nil()) -> tt() r24: isList(n____(V1,V2)) -> U21(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) r25: isNeList(V) -> U31(isPalListKind(activate(V)),activate(V)) r26: isNeList(n____(V1,V2)) -> U41(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) r27: isNeList(n____(V1,V2)) -> U51(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) r28: isNePal(V) -> U61(isPalListKind(activate(V)),activate(V)) r29: isNePal(n____(I,__(P,I))) -> and(and(isQid(activate(I)),n__isPalListKind(activate(I))),n__and(isPal(activate(P)),n__isPalListKind(activate(P)))) r30: isPal(V) -> U71(isPalListKind(activate(V)),activate(V)) r31: isPal(n__nil()) -> tt() r32: isPalListKind(n__a()) -> tt() r33: isPalListKind(n__e()) -> tt() r34: isPalListKind(n__i()) -> tt() r35: isPalListKind(n__nil()) -> tt() r36: isPalListKind(n__o()) -> tt() r37: isPalListKind(n__u()) -> tt() r38: isPalListKind(n____(V1,V2)) -> and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))) r39: isQid(n__a()) -> tt() r40: isQid(n__e()) -> tt() r41: isQid(n__i()) -> tt() r42: isQid(n__o()) -> tt() r43: isQid(n__u()) -> tt() r44: nil() -> n__nil() r45: __(X1,X2) -> n____(X1,X2) r46: isPalListKind(X) -> n__isPalListKind(X) r47: and(X1,X2) -> n__and(X1,X2) r48: a() -> n__a() r49: e() -> n__e() r50: i() -> n__i() r51: o() -> n__o() r52: u() -> n__u() r53: activate(n__nil()) -> nil() r54: activate(n____(X1,X2)) -> __(X1,X2) r55: activate(n__isPalListKind(X)) -> isPalListKind(X) r56: activate(n__and(X1,X2)) -> and(X1,X2) r57: activate(n__a()) -> a() r58: activate(n__e()) -> e() r59: activate(n__i()) -> i() r60: activate(n__o()) -> o() r61: activate(n__u()) -> u() r62: activate(X) -> X The set of usable rules consists of r1, r2, r3, r21, r32, r33, r34, r35, r36, r37, r38, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: isPalListKind#_A(x1) = x1 n_____A(x1,x2) = x1 + x2 + 8 activate#_A(x1) = x1 n__and_A(x1,x2) = x1 + x2 + 1 and#_A(x1,x2) = x1 + x2 tt_A() = 1 n__isPalListKind_A(x1) = x1 + 1 activate_A(x1) = x1 + 2 isPalListKind_A(x1) = x1 + 2 ___A(x1,x2) = x1 + x2 + 9 nil_A() = 2 and_A(x1,x2) = x1 + x2 + 2 n__nil_A() = 1 a_A() = 2 n__a_A() = 1 e_A() = 2 n__e_A() = 1 i_A() = 2 n__i_A() = 1 o_A() = 2 n__o_A() = 1 u_A() = 2 n__u_A() = 1 2. matrix interpretations: carrier: N^1 order: standard order interpretations: isPalListKind#_A(x1) = x1 + 2 n_____A(x1,x2) = 3 activate#_A(x1) = 1 n__and_A(x1,x2) = x1 + x2 + 4 and#_A(x1,x2) = x2 tt_A() = 1 n__isPalListKind_A(x1) = 3 activate_A(x1) = 1 isPalListKind_A(x1) = 2 ___A(x1,x2) = 2 nil_A() = 2 and_A(x1,x2) = 3 n__nil_A() = 3 a_A() = 2 n__a_A() = 3 e_A() = 2 n__e_A() = 1 i_A() = 2 n__i_A() = 1 o_A() = 2 n__o_A() = 3 u_A() = 2 n__u_A() = 3 The next rules are strictly ordered: p1, p2, p3, p4, p5, p6, p7 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: __#(__(X,Y),Z) -> __#(X,__(Y,Z)) p2: __#(__(X,Y),Z) -> __#(Y,Z) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt(),V) -> U12(isNeList(activate(V))) r5: U12(tt()) -> tt() r6: U21(tt(),V1,V2) -> U22(isList(activate(V1)),activate(V2)) r7: U22(tt(),V2) -> U23(isList(activate(V2))) r8: U23(tt()) -> tt() r9: U31(tt(),V) -> U32(isQid(activate(V))) r10: U32(tt()) -> tt() r11: U41(tt(),V1,V2) -> U42(isList(activate(V1)),activate(V2)) r12: U42(tt(),V2) -> U43(isNeList(activate(V2))) r13: U43(tt()) -> tt() r14: U51(tt(),V1,V2) -> U52(isNeList(activate(V1)),activate(V2)) r15: U52(tt(),V2) -> U53(isList(activate(V2))) r16: U53(tt()) -> tt() r17: U61(tt(),V) -> U62(isQid(activate(V))) r18: U62(tt()) -> tt() r19: U71(tt(),V) -> U72(isNePal(activate(V))) r20: U72(tt()) -> tt() r21: and(tt(),X) -> activate(X) r22: isList(V) -> U11(isPalListKind(activate(V)),activate(V)) r23: isList(n__nil()) -> tt() r24: isList(n____(V1,V2)) -> U21(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) r25: isNeList(V) -> U31(isPalListKind(activate(V)),activate(V)) r26: isNeList(n____(V1,V2)) -> U41(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) r27: isNeList(n____(V1,V2)) -> U51(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) r28: isNePal(V) -> U61(isPalListKind(activate(V)),activate(V)) r29: isNePal(n____(I,__(P,I))) -> and(and(isQid(activate(I)),n__isPalListKind(activate(I))),n__and(isPal(activate(P)),n__isPalListKind(activate(P)))) r30: isPal(V) -> U71(isPalListKind(activate(V)),activate(V)) r31: isPal(n__nil()) -> tt() r32: isPalListKind(n__a()) -> tt() r33: isPalListKind(n__e()) -> tt() r34: isPalListKind(n__i()) -> tt() r35: isPalListKind(n__nil()) -> tt() r36: isPalListKind(n__o()) -> tt() r37: isPalListKind(n__u()) -> tt() r38: isPalListKind(n____(V1,V2)) -> and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))) r39: isQid(n__a()) -> tt() r40: isQid(n__e()) -> tt() r41: isQid(n__i()) -> tt() r42: isQid(n__o()) -> tt() r43: isQid(n__u()) -> tt() r44: nil() -> n__nil() r45: __(X1,X2) -> n____(X1,X2) r46: isPalListKind(X) -> n__isPalListKind(X) r47: and(X1,X2) -> n__and(X1,X2) r48: a() -> n__a() r49: e() -> n__e() r50: i() -> n__i() r51: o() -> n__o() r52: u() -> n__u() r53: activate(n__nil()) -> nil() r54: activate(n____(X1,X2)) -> __(X1,X2) r55: activate(n__isPalListKind(X)) -> isPalListKind(X) r56: activate(n__and(X1,X2)) -> and(X1,X2) r57: activate(n__a()) -> a() r58: activate(n__e()) -> e() r59: activate(n__i()) -> i() r60: activate(n__o()) -> o() r61: activate(n__u()) -> u() r62: activate(X) -> X The set of usable rules consists of r1, r2, r3, r45 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: __#_A(x1,x2) = x1 ___A(x1,x2) = x1 + x2 + 1 nil_A() = 0 n_____A(x1,x2) = 0 2. matrix interpretations: carrier: N^1 order: standard order interpretations: __#_A(x1,x2) = x1 ___A(x1,x2) = x2 nil_A() = 1 n_____A(x1,x2) = 1 The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.