YES We show the termination of the TRS R: a__f(X) -> g(h(f(X))) mark(f(X)) -> a__f(mark(X)) mark(g(X)) -> g(X) mark(h(X)) -> h(mark(X)) a__f(X) -> f(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(f(X)) -> a__f#(mark(X)) p2: mark#(f(X)) -> mark#(X) p3: mark#(h(X)) -> mark#(X) and R consists of: r1: a__f(X) -> g(h(f(X))) r2: mark(f(X)) -> a__f(mark(X)) r3: mark(g(X)) -> g(X) r4: mark(h(X)) -> h(mark(X)) r5: a__f(X) -> f(X) The estimated dependency graph contains the following SCCs: {p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(f(X)) -> mark#(X) p2: mark#(h(X)) -> mark#(X) and R consists of: r1: a__f(X) -> g(h(f(X))) r2: mark(f(X)) -> a__f(mark(X)) r3: mark(g(X)) -> g(X) r4: mark(h(X)) -> h(mark(X)) r5: a__f(X) -> f(X) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: mark#_A(x1) = x1 f_A(x1) = x1 + 1 h_A(x1) = x1 + 1 2. matrix interpretations: carrier: N^1 order: standard order interpretations: mark#_A(x1) = 0 f_A(x1) = x1 + 1 h_A(x1) = x1 + 1 The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.