YES We show the termination of the TRS R: fib(N) -> sel(N,fib1(s(|0|()),s(|0|()))) fib1(X,Y) -> cons(X,n__fib1(Y,n__add(X,Y))) add(|0|(),X) -> X add(s(X),Y) -> s(add(X,Y)) sel(|0|(),cons(X,XS)) -> X sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) fib1(X1,X2) -> n__fib1(X1,X2) add(X1,X2) -> n__add(X1,X2) activate(n__fib1(X1,X2)) -> fib1(activate(X1),activate(X2)) activate(n__add(X1,X2)) -> add(activate(X1),activate(X2)) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: fib#(N) -> sel#(N,fib1(s(|0|()),s(|0|()))) p2: fib#(N) -> fib1#(s(|0|()),s(|0|())) p3: add#(s(X),Y) -> add#(X,Y) p4: sel#(s(N),cons(X,XS)) -> sel#(N,activate(XS)) p5: sel#(s(N),cons(X,XS)) -> activate#(XS) p6: activate#(n__fib1(X1,X2)) -> fib1#(activate(X1),activate(X2)) p7: activate#(n__fib1(X1,X2)) -> activate#(X1) p8: activate#(n__fib1(X1,X2)) -> activate#(X2) p9: activate#(n__add(X1,X2)) -> add#(activate(X1),activate(X2)) p10: activate#(n__add(X1,X2)) -> activate#(X1) p11: activate#(n__add(X1,X2)) -> activate#(X2) and R consists of: r1: fib(N) -> sel(N,fib1(s(|0|()),s(|0|()))) r2: fib1(X,Y) -> cons(X,n__fib1(Y,n__add(X,Y))) r3: add(|0|(),X) -> X r4: add(s(X),Y) -> s(add(X,Y)) r5: sel(|0|(),cons(X,XS)) -> X r6: sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) r7: fib1(X1,X2) -> n__fib1(X1,X2) r8: add(X1,X2) -> n__add(X1,X2) r9: activate(n__fib1(X1,X2)) -> fib1(activate(X1),activate(X2)) r10: activate(n__add(X1,X2)) -> add(activate(X1),activate(X2)) r11: activate(X) -> X The estimated dependency graph contains the following SCCs: {p4} {p7, p8, p10, p11} {p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: sel#(s(N),cons(X,XS)) -> sel#(N,activate(XS)) and R consists of: r1: fib(N) -> sel(N,fib1(s(|0|()),s(|0|()))) r2: fib1(X,Y) -> cons(X,n__fib1(Y,n__add(X,Y))) r3: add(|0|(),X) -> X r4: add(s(X),Y) -> s(add(X,Y)) r5: sel(|0|(),cons(X,XS)) -> X r6: sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) r7: fib1(X1,X2) -> n__fib1(X1,X2) r8: add(X1,X2) -> n__add(X1,X2) r9: activate(n__fib1(X1,X2)) -> fib1(activate(X1),activate(X2)) r10: activate(n__add(X1,X2)) -> add(activate(X1),activate(X2)) r11: activate(X) -> X The set of usable rules consists of r2, r3, r4, r7, r8, r9, r10, r11 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: sel#_A(x1,x2) = x1 s_A(x1) = x1 cons_A(x1,x2) = 0 activate_A(x1) = x1 fib1_A(x1,x2) = 1 n__fib1_A(x1,x2) = 1 n__add_A(x1,x2) = x1 + x2 + 1 add_A(x1,x2) = x1 + x2 + 1 |0|_A() = 1 2. matrix interpretations: carrier: N^1 order: standard order interpretations: sel#_A(x1,x2) = x1 s_A(x1) = x1 + 1 cons_A(x1,x2) = 0 activate_A(x1) = x1 + 2 fib1_A(x1,x2) = 1 n__fib1_A(x1,x2) = 0 n__add_A(x1,x2) = x1 add_A(x1,x2) = x1 |0|_A() = 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__add(X1,X2)) -> activate#(X2) p2: activate#(n__add(X1,X2)) -> activate#(X1) p3: activate#(n__fib1(X1,X2)) -> activate#(X2) p4: activate#(n__fib1(X1,X2)) -> activate#(X1) and R consists of: r1: fib(N) -> sel(N,fib1(s(|0|()),s(|0|()))) r2: fib1(X,Y) -> cons(X,n__fib1(Y,n__add(X,Y))) r3: add(|0|(),X) -> X r4: add(s(X),Y) -> s(add(X,Y)) r5: sel(|0|(),cons(X,XS)) -> X r6: sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) r7: fib1(X1,X2) -> n__fib1(X1,X2) r8: add(X1,X2) -> n__add(X1,X2) r9: activate(n__fib1(X1,X2)) -> fib1(activate(X1),activate(X2)) r10: activate(n__add(X1,X2)) -> add(activate(X1),activate(X2)) r11: activate(X) -> X The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: activate#_A(x1) = x1 n__add_A(x1,x2) = x1 + x2 + 1 n__fib1_A(x1,x2) = x1 + x2 + 1 2. matrix interpretations: carrier: N^1 order: standard order interpretations: activate#_A(x1) = x1 n__add_A(x1,x2) = x1 + x2 + 1 n__fib1_A(x1,x2) = x1 + x2 + 1 The next rules are strictly ordered: p1, p2, p3, p4 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: add#(s(X),Y) -> add#(X,Y) and R consists of: r1: fib(N) -> sel(N,fib1(s(|0|()),s(|0|()))) r2: fib1(X,Y) -> cons(X,n__fib1(Y,n__add(X,Y))) r3: add(|0|(),X) -> X r4: add(s(X),Y) -> s(add(X,Y)) r5: sel(|0|(),cons(X,XS)) -> X r6: sel(s(N),cons(X,XS)) -> sel(N,activate(XS)) r7: fib1(X1,X2) -> n__fib1(X1,X2) r8: add(X1,X2) -> n__add(X1,X2) r9: activate(n__fib1(X1,X2)) -> fib1(activate(X1),activate(X2)) r10: activate(n__add(X1,X2)) -> add(activate(X1),activate(X2)) r11: activate(X) -> X The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: add#_A(x1,x2) = x1 + x2 s_A(x1) = x1 + 1 2. matrix interpretations: carrier: N^1 order: standard order interpretations: add#_A(x1,x2) = x1 + x2 s_A(x1) = x1 + 1 The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11 We remove them from the problem. Then no dependency pair remains.