YES We show the termination of the TRS R: a__first(|0|(),X) -> nil() a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) a__from(X) -> cons(mark(X),from(s(X))) mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) mark(from(X)) -> a__from(mark(X)) mark(|0|()) -> |0|() mark(nil()) -> nil() mark(s(X)) -> s(mark(X)) mark(cons(X1,X2)) -> cons(mark(X1),X2) a__first(X1,X2) -> first(X1,X2) a__from(X) -> from(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__first#(s(X),cons(Y,Z)) -> mark#(Y) p2: a__from#(X) -> mark#(X) p3: mark#(first(X1,X2)) -> a__first#(mark(X1),mark(X2)) p4: mark#(first(X1,X2)) -> mark#(X1) p5: mark#(first(X1,X2)) -> mark#(X2) p6: mark#(from(X)) -> a__from#(mark(X)) p7: mark#(from(X)) -> mark#(X) p8: mark#(s(X)) -> mark#(X) p9: mark#(cons(X1,X2)) -> mark#(X1) and R consists of: r1: a__first(|0|(),X) -> nil() r2: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r5: mark(from(X)) -> a__from(mark(X)) r6: mark(|0|()) -> |0|() r7: mark(nil()) -> nil() r8: mark(s(X)) -> s(mark(X)) r9: mark(cons(X1,X2)) -> cons(mark(X1),X2) r10: a__first(X1,X2) -> first(X1,X2) r11: a__from(X) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__first#(s(X),cons(Y,Z)) -> mark#(Y) p2: mark#(cons(X1,X2)) -> mark#(X1) p3: mark#(s(X)) -> mark#(X) p4: mark#(from(X)) -> mark#(X) p5: mark#(from(X)) -> a__from#(mark(X)) p6: a__from#(X) -> mark#(X) p7: mark#(first(X1,X2)) -> mark#(X2) p8: mark#(first(X1,X2)) -> mark#(X1) p9: mark#(first(X1,X2)) -> a__first#(mark(X1),mark(X2)) and R consists of: r1: a__first(|0|(),X) -> nil() r2: a__first(s(X),cons(Y,Z)) -> cons(mark(Y),first(X,Z)) r3: a__from(X) -> cons(mark(X),from(s(X))) r4: mark(first(X1,X2)) -> a__first(mark(X1),mark(X2)) r5: mark(from(X)) -> a__from(mark(X)) r6: mark(|0|()) -> |0|() r7: mark(nil()) -> nil() r8: mark(s(X)) -> s(mark(X)) r9: mark(cons(X1,X2)) -> cons(mark(X1),X2) r10: a__first(X1,X2) -> first(X1,X2) r11: a__from(X) -> from(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: a__first#_A(x1,x2) = x1 + x2 s_A(x1) = x1 + 1 cons_A(x1,x2) = x1 + 1 mark#_A(x1) = x1 from_A(x1) = x1 + 2 a__from#_A(x1) = x1 + 1 mark_A(x1) = x1 first_A(x1,x2) = x1 + x2 + 1 a__first_A(x1,x2) = x1 + x2 + 1 |0|_A() = 1 nil_A() = 1 a__from_A(x1) = x1 + 2 2. matrix interpretations: carrier: N^1 order: standard order interpretations: a__first#_A(x1,x2) = 1 s_A(x1) = 1 cons_A(x1,x2) = 3 mark#_A(x1) = 0 from_A(x1) = 1 a__from#_A(x1) = x1 + 1 mark_A(x1) = 4 first_A(x1,x2) = 1 a__first_A(x1,x2) = 2 |0|_A() = 0 nil_A() = 1 a__from_A(x1) = 2 The next rules are strictly ordered: p1, p2, p3, p4, p5, p6, p7, p8, p9 We remove them from the problem. Then no dependency pair remains.