YES We show the termination of the TRS R: active(f(g(X),Y)) -> mark(f(X,f(g(X),Y))) mark(f(X1,X2)) -> active(f(mark(X1),X2)) mark(g(X)) -> active(g(mark(X))) f(mark(X1),X2) -> f(X1,X2) f(X1,mark(X2)) -> f(X1,X2) f(active(X1),X2) -> f(X1,X2) f(X1,active(X2)) -> f(X1,X2) g(mark(X)) -> g(X) g(active(X)) -> g(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(f(g(X),Y)) -> mark#(f(X,f(g(X),Y))) p2: active#(f(g(X),Y)) -> f#(X,f(g(X),Y)) p3: mark#(f(X1,X2)) -> active#(f(mark(X1),X2)) p4: mark#(f(X1,X2)) -> f#(mark(X1),X2) p5: mark#(f(X1,X2)) -> mark#(X1) p6: mark#(g(X)) -> active#(g(mark(X))) p7: mark#(g(X)) -> g#(mark(X)) p8: mark#(g(X)) -> mark#(X) p9: f#(mark(X1),X2) -> f#(X1,X2) p10: f#(X1,mark(X2)) -> f#(X1,X2) p11: f#(active(X1),X2) -> f#(X1,X2) p12: f#(X1,active(X2)) -> f#(X1,X2) p13: g#(mark(X)) -> g#(X) p14: g#(active(X)) -> g#(X) and R consists of: r1: active(f(g(X),Y)) -> mark(f(X,f(g(X),Y))) r2: mark(f(X1,X2)) -> active(f(mark(X1),X2)) r3: mark(g(X)) -> active(g(mark(X))) r4: f(mark(X1),X2) -> f(X1,X2) r5: f(X1,mark(X2)) -> f(X1,X2) r6: f(active(X1),X2) -> f(X1,X2) r7: f(X1,active(X2)) -> f(X1,X2) r8: g(mark(X)) -> g(X) r9: g(active(X)) -> g(X) The estimated dependency graph contains the following SCCs: {p1, p3, p5, p6, p8} {p9, p10, p11, p12} {p13, p14} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(f(g(X),Y)) -> mark#(f(X,f(g(X),Y))) p2: mark#(g(X)) -> mark#(X) p3: mark#(g(X)) -> active#(g(mark(X))) p4: mark#(f(X1,X2)) -> mark#(X1) p5: mark#(f(X1,X2)) -> active#(f(mark(X1),X2)) and R consists of: r1: active(f(g(X),Y)) -> mark(f(X,f(g(X),Y))) r2: mark(f(X1,X2)) -> active(f(mark(X1),X2)) r3: mark(g(X)) -> active(g(mark(X))) r4: f(mark(X1),X2) -> f(X1,X2) r5: f(X1,mark(X2)) -> f(X1,X2) r6: f(active(X1),X2) -> f(X1,X2) r7: f(X1,active(X2)) -> f(X1,X2) r8: g(mark(X)) -> g(X) r9: g(active(X)) -> g(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: active#_A(x1) = x1 f_A(x1,x2) = x1 + 1 g_A(x1) = x1 + 3 mark#_A(x1) = x1 + 2 mark_A(x1) = x1 + 1 active_A(x1) = x1 2. matrix interpretations: carrier: N^1 order: standard order interpretations: active#_A(x1) = 1 f_A(x1,x2) = x1 g_A(x1) = 2 mark#_A(x1) = x1 mark_A(x1) = 3 active_A(x1) = x1 The next rules are strictly ordered: p1, p2, p3, p4, p5 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(mark(X1),X2) -> f#(X1,X2) p2: f#(X1,active(X2)) -> f#(X1,X2) p3: f#(active(X1),X2) -> f#(X1,X2) p4: f#(X1,mark(X2)) -> f#(X1,X2) and R consists of: r1: active(f(g(X),Y)) -> mark(f(X,f(g(X),Y))) r2: mark(f(X1,X2)) -> active(f(mark(X1),X2)) r3: mark(g(X)) -> active(g(mark(X))) r4: f(mark(X1),X2) -> f(X1,X2) r5: f(X1,mark(X2)) -> f(X1,X2) r6: f(active(X1),X2) -> f(X1,X2) r7: f(X1,active(X2)) -> f(X1,X2) r8: g(mark(X)) -> g(X) r9: g(active(X)) -> g(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: f#_A(x1,x2) = x1 + x2 mark_A(x1) = x1 + 1 active_A(x1) = x1 + 1 2. matrix interpretations: carrier: N^1 order: standard order interpretations: f#_A(x1,x2) = x1 + x2 mark_A(x1) = x1 + 1 active_A(x1) = x1 + 1 The next rules are strictly ordered: p1, p2, p3, p4 r1, r2, r3, r4, r5, r6, r7, r8, r9 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: g#(mark(X)) -> g#(X) p2: g#(active(X)) -> g#(X) and R consists of: r1: active(f(g(X),Y)) -> mark(f(X,f(g(X),Y))) r2: mark(f(X1,X2)) -> active(f(mark(X1),X2)) r3: mark(g(X)) -> active(g(mark(X))) r4: f(mark(X1),X2) -> f(X1,X2) r5: f(X1,mark(X2)) -> f(X1,X2) r6: f(active(X1),X2) -> f(X1,X2) r7: f(X1,active(X2)) -> f(X1,X2) r8: g(mark(X)) -> g(X) r9: g(active(X)) -> g(X) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: g#_A(x1) = x1 mark_A(x1) = x1 + 1 active_A(x1) = x1 + 1 2. matrix interpretations: carrier: N^1 order: standard order interpretations: g#_A(x1) = 0 mark_A(x1) = x1 + 1 active_A(x1) = x1 + 1 The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.