YES We show the termination of the TRS R: f(s(X)) -> f(X) g(cons(|0|(),Y)) -> g(Y) g(cons(s(X),Y)) -> s(X) h(cons(X,Y)) -> h(g(cons(X,Y))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(X)) -> f#(X) p2: g#(cons(|0|(),Y)) -> g#(Y) p3: h#(cons(X,Y)) -> h#(g(cons(X,Y))) p4: h#(cons(X,Y)) -> g#(cons(X,Y)) and R consists of: r1: f(s(X)) -> f(X) r2: g(cons(|0|(),Y)) -> g(Y) r3: g(cons(s(X),Y)) -> s(X) r4: h(cons(X,Y)) -> h(g(cons(X,Y))) The estimated dependency graph contains the following SCCs: {p1} {p3} {p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(X)) -> f#(X) and R consists of: r1: f(s(X)) -> f(X) r2: g(cons(|0|(),Y)) -> g(Y) r3: g(cons(s(X),Y)) -> s(X) r4: h(cons(X,Y)) -> h(g(cons(X,Y))) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: f#_A(x1) = x1 s_A(x1) = x1 + 1 2. matrix interpretations: carrier: N^1 order: standard order interpretations: f#_A(x1) = 0 s_A(x1) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: h#(cons(X,Y)) -> h#(g(cons(X,Y))) and R consists of: r1: f(s(X)) -> f(X) r2: g(cons(|0|(),Y)) -> g(Y) r3: g(cons(s(X),Y)) -> s(X) r4: h(cons(X,Y)) -> h(g(cons(X,Y))) The set of usable rules consists of r2, r3 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: h#_A(x1) = x1 cons_A(x1,x2) = x1 + x2 + 1 g_A(x1) = x1 |0|_A() = 1 s_A(x1) = x1 + 1 2. matrix interpretations: carrier: N^1 order: standard order interpretations: h#_A(x1) = x1 cons_A(x1,x2) = x2 + 3 g_A(x1) = 2 |0|_A() = 0 s_A(x1) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: g#(cons(|0|(),Y)) -> g#(Y) and R consists of: r1: f(s(X)) -> f(X) r2: g(cons(|0|(),Y)) -> g(Y) r3: g(cons(s(X),Y)) -> s(X) r4: h(cons(X,Y)) -> h(g(cons(X,Y))) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: g#_A(x1) = x1 cons_A(x1,x2) = x2 + 1 |0|_A() = 1 2. matrix interpretations: carrier: N^1 order: standard order interpretations: g#_A(x1) = 0 cons_A(x1,x2) = x2 + 1 |0|_A() = 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.