YES We show the termination of the TRS R: p(|0|()) -> |0|() p(s(x)) -> x le(|0|(),y) -> true() le(s(x),|0|()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,|0|()) -> x minus(x,s(y)) -> if(le(x,s(y)),|0|(),p(minus(x,p(s(y))))) if(true(),x,y) -> x if(false(),x,y) -> y -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: le#(s(x),s(y)) -> le#(x,y) p2: minus#(x,s(y)) -> if#(le(x,s(y)),|0|(),p(minus(x,p(s(y))))) p3: minus#(x,s(y)) -> le#(x,s(y)) p4: minus#(x,s(y)) -> p#(minus(x,p(s(y)))) p5: minus#(x,s(y)) -> minus#(x,p(s(y))) p6: minus#(x,s(y)) -> p#(s(y)) and R consists of: r1: p(|0|()) -> |0|() r2: p(s(x)) -> x r3: le(|0|(),y) -> true() r4: le(s(x),|0|()) -> false() r5: le(s(x),s(y)) -> le(x,y) r6: minus(x,|0|()) -> x r7: minus(x,s(y)) -> if(le(x,s(y)),|0|(),p(minus(x,p(s(y))))) r8: if(true(),x,y) -> x r9: if(false(),x,y) -> y The estimated dependency graph contains the following SCCs: {p5} {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: minus#(x,s(y)) -> minus#(x,p(s(y))) and R consists of: r1: p(|0|()) -> |0|() r2: p(s(x)) -> x r3: le(|0|(),y) -> true() r4: le(s(x),|0|()) -> false() r5: le(s(x),s(y)) -> le(x,y) r6: minus(x,|0|()) -> x r7: minus(x,s(y)) -> if(le(x,s(y)),|0|(),p(minus(x,p(s(y))))) r8: if(true(),x,y) -> x r9: if(false(),x,y) -> y The set of usable rules consists of r2 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: minus#_A(x1,x2) = x1 + x2 s_A(x1) = x1 + 1 p_A(x1) = x1 2. matrix interpretations: carrier: N^1 order: standard order interpretations: minus#_A(x1,x2) = x1 + x2 s_A(x1) = x1 + 1 p_A(x1) = 0 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: le#(s(x),s(y)) -> le#(x,y) and R consists of: r1: p(|0|()) -> |0|() r2: p(s(x)) -> x r3: le(|0|(),y) -> true() r4: le(s(x),|0|()) -> false() r5: le(s(x),s(y)) -> le(x,y) r6: minus(x,|0|()) -> x r7: minus(x,s(y)) -> if(le(x,s(y)),|0|(),p(minus(x,p(s(y))))) r8: if(true(),x,y) -> x r9: if(false(),x,y) -> y The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: le#_A(x1,x2) = x1 + x2 s_A(x1) = x1 + 1 2. matrix interpretations: carrier: N^1 order: standard order interpretations: le#_A(x1,x2) = 0 s_A(x1) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.