YES We show the termination of the TRS R: quot(|0|(),s(y),s(z)) -> |0|() quot(s(x),s(y),z) -> quot(x,y,z) plus(|0|(),y) -> y plus(s(x),y) -> s(plus(x,y)) quot(x,|0|(),s(z)) -> s(quot(x,plus(z,s(|0|())),s(z))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: quot#(s(x),s(y),z) -> quot#(x,y,z) p2: plus#(s(x),y) -> plus#(x,y) p3: quot#(x,|0|(),s(z)) -> quot#(x,plus(z,s(|0|())),s(z)) p4: quot#(x,|0|(),s(z)) -> plus#(z,s(|0|())) and R consists of: r1: quot(|0|(),s(y),s(z)) -> |0|() r2: quot(s(x),s(y),z) -> quot(x,y,z) r3: plus(|0|(),y) -> y r4: plus(s(x),y) -> s(plus(x,y)) r5: quot(x,|0|(),s(z)) -> s(quot(x,plus(z,s(|0|())),s(z))) The estimated dependency graph contains the following SCCs: {p1, p3} {p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: quot#(s(x),s(y),z) -> quot#(x,y,z) p2: quot#(x,|0|(),s(z)) -> quot#(x,plus(z,s(|0|())),s(z)) and R consists of: r1: quot(|0|(),s(y),s(z)) -> |0|() r2: quot(s(x),s(y),z) -> quot(x,y,z) r3: plus(|0|(),y) -> y r4: plus(s(x),y) -> s(plus(x,y)) r5: quot(x,|0|(),s(z)) -> s(quot(x,plus(z,s(|0|())),s(z))) The set of usable rules consists of r3, r4 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: quot#_A(x1,x2,x3) = x1 + x3 s_A(x1) = x1 + 1 |0|_A() = 1 plus_A(x1,x2) = x1 + x2 + 1 2. matrix interpretations: carrier: N^1 order: standard order interpretations: quot#_A(x1,x2,x3) = x3 s_A(x1) = 1 |0|_A() = 1 plus_A(x1,x2) = 2 The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: quot#(x,|0|(),s(z)) -> quot#(x,plus(z,s(|0|())),s(z)) and R consists of: r1: quot(|0|(),s(y),s(z)) -> |0|() r2: quot(s(x),s(y),z) -> quot(x,y,z) r3: plus(|0|(),y) -> y r4: plus(s(x),y) -> s(plus(x,y)) r5: quot(x,|0|(),s(z)) -> s(quot(x,plus(z,s(|0|())),s(z))) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: quot#(x,|0|(),s(z)) -> quot#(x,plus(z,s(|0|())),s(z)) and R consists of: r1: quot(|0|(),s(y),s(z)) -> |0|() r2: quot(s(x),s(y),z) -> quot(x,y,z) r3: plus(|0|(),y) -> y r4: plus(s(x),y) -> s(plus(x,y)) r5: quot(x,|0|(),s(z)) -> s(quot(x,plus(z,s(|0|())),s(z))) The set of usable rules consists of r3, r4 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: quot#_A(x1,x2,x3) = x1 + x2 + x3 |0|_A() = 4 s_A(x1) = 1 plus_A(x1,x2) = x2 + 2 2. matrix interpretations: carrier: N^1 order: standard order interpretations: quot#_A(x1,x2,x3) = x1 + x2 + x3 |0|_A() = 1 s_A(x1) = 3 plus_A(x1,x2) = 2 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: plus#(s(x),y) -> plus#(x,y) and R consists of: r1: quot(|0|(),s(y),s(z)) -> |0|() r2: quot(s(x),s(y),z) -> quot(x,y,z) r3: plus(|0|(),y) -> y r4: plus(s(x),y) -> s(plus(x,y)) r5: quot(x,|0|(),s(z)) -> s(quot(x,plus(z,s(|0|())),s(z))) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: plus#_A(x1,x2) = x1 + x2 s_A(x1) = x1 + 1 2. matrix interpretations: carrier: N^1 order: standard order interpretations: plus#_A(x1,x2) = x1 + x2 s_A(x1) = x1 + 1 The next rules are strictly ordered: p1 r1, r2, r3, r4, r5 We remove them from the problem. Then no dependency pair remains.