YES We show the termination of the TRS R: msort(nil()) -> nil() msort(.(x,y)) -> .(min(x,y),msort(del(min(x,y),.(x,y)))) min(x,nil()) -> x min(x,.(y,z)) -> if(<=(x,y),min(x,z),min(y,z)) del(x,nil()) -> nil() del(x,.(y,z)) -> if(=(x,y),z,.(y,del(x,z))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: msort#(.(x,y)) -> min#(x,y) p2: msort#(.(x,y)) -> msort#(del(min(x,y),.(x,y))) p3: msort#(.(x,y)) -> del#(min(x,y),.(x,y)) p4: min#(x,.(y,z)) -> min#(x,z) p5: min#(x,.(y,z)) -> min#(y,z) p6: del#(x,.(y,z)) -> del#(x,z) and R consists of: r1: msort(nil()) -> nil() r2: msort(.(x,y)) -> .(min(x,y),msort(del(min(x,y),.(x,y)))) r3: min(x,nil()) -> x r4: min(x,.(y,z)) -> if(<=(x,y),min(x,z),min(y,z)) r5: del(x,nil()) -> nil() r6: del(x,.(y,z)) -> if(=(x,y),z,.(y,del(x,z))) The estimated dependency graph contains the following SCCs: {p2} {p4, p5} {p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: msort#(.(x,y)) -> msort#(del(min(x,y),.(x,y))) and R consists of: r1: msort(nil()) -> nil() r2: msort(.(x,y)) -> .(min(x,y),msort(del(min(x,y),.(x,y)))) r3: min(x,nil()) -> x r4: min(x,.(y,z)) -> if(<=(x,y),min(x,z),min(y,z)) r5: del(x,nil()) -> nil() r6: del(x,.(y,z)) -> if(=(x,y),z,.(y,del(x,z))) The set of usable rules consists of r3, r4, r5, r6 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: msort#_A(x1) = x1 ._A(x1,x2) = x1 + x2 + 1 del_A(x1,x2) = x2 min_A(x1,x2) = x1 + x2 + 1 nil_A() = 1 if_A(x1,x2,x3) = x3 <=_A(x1,x2) = x2 + 1 =_A(x1,x2) = x1 + 1 2. matrix interpretations: carrier: N^1 order: standard order interpretations: msort#_A(x1) = x1 ._A(x1,x2) = x1 + 4 del_A(x1,x2) = 3 min_A(x1,x2) = 1 nil_A() = 1 if_A(x1,x2,x3) = 2 <=_A(x1,x2) = x2 + 1 =_A(x1,x2) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: min#(x,.(y,z)) -> min#(x,z) p2: min#(x,.(y,z)) -> min#(y,z) and R consists of: r1: msort(nil()) -> nil() r2: msort(.(x,y)) -> .(min(x,y),msort(del(min(x,y),.(x,y)))) r3: min(x,nil()) -> x r4: min(x,.(y,z)) -> if(<=(x,y),min(x,z),min(y,z)) r5: del(x,nil()) -> nil() r6: del(x,.(y,z)) -> if(=(x,y),z,.(y,del(x,z))) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: min#_A(x1,x2) = x2 ._A(x1,x2) = x1 + x2 + 1 2. matrix interpretations: carrier: N^1 order: standard order interpretations: min#_A(x1,x2) = 0 ._A(x1,x2) = x2 + 1 The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: del#(x,.(y,z)) -> del#(x,z) and R consists of: r1: msort(nil()) -> nil() r2: msort(.(x,y)) -> .(min(x,y),msort(del(min(x,y),.(x,y)))) r3: min(x,nil()) -> x r4: min(x,.(y,z)) -> if(<=(x,y),min(x,z),min(y,z)) r5: del(x,nil()) -> nil() r6: del(x,.(y,z)) -> if(=(x,y),z,.(y,del(x,z))) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: del#_A(x1,x2) = x1 + x2 ._A(x1,x2) = x1 + x2 + 1 2. matrix interpretations: carrier: N^1 order: standard order interpretations: del#_A(x1,x2) = x1 ._A(x1,x2) = x1 + x2 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.