YES We show the termination of the TRS R: qsort(nil()) -> nil() qsort(.(x,y)) -> ++(qsort(lowers(x,y)),.(x,qsort(greaters(x,y)))) lowers(x,nil()) -> nil() lowers(x,.(y,z)) -> if(<=(y,x),.(y,lowers(x,z)),lowers(x,z)) greaters(x,nil()) -> nil() greaters(x,.(y,z)) -> if(<=(y,x),greaters(x,z),.(y,greaters(x,z))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: qsort#(.(x,y)) -> qsort#(lowers(x,y)) p2: qsort#(.(x,y)) -> lowers#(x,y) p3: qsort#(.(x,y)) -> qsort#(greaters(x,y)) p4: qsort#(.(x,y)) -> greaters#(x,y) p5: lowers#(x,.(y,z)) -> lowers#(x,z) p6: greaters#(x,.(y,z)) -> greaters#(x,z) and R consists of: r1: qsort(nil()) -> nil() r2: qsort(.(x,y)) -> ++(qsort(lowers(x,y)),.(x,qsort(greaters(x,y)))) r3: lowers(x,nil()) -> nil() r4: lowers(x,.(y,z)) -> if(<=(y,x),.(y,lowers(x,z)),lowers(x,z)) r5: greaters(x,nil()) -> nil() r6: greaters(x,.(y,z)) -> if(<=(y,x),greaters(x,z),.(y,greaters(x,z))) The estimated dependency graph contains the following SCCs: {p1, p3} {p5} {p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: qsort#(.(x,y)) -> qsort#(lowers(x,y)) p2: qsort#(.(x,y)) -> qsort#(greaters(x,y)) and R consists of: r1: qsort(nil()) -> nil() r2: qsort(.(x,y)) -> ++(qsort(lowers(x,y)),.(x,qsort(greaters(x,y)))) r3: lowers(x,nil()) -> nil() r4: lowers(x,.(y,z)) -> if(<=(y,x),.(y,lowers(x,z)),lowers(x,z)) r5: greaters(x,nil()) -> nil() r6: greaters(x,.(y,z)) -> if(<=(y,x),greaters(x,z),.(y,greaters(x,z))) The set of usable rules consists of r3, r4, r5, r6 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: qsort#_A(x1) = x1 ._A(x1,x2) = x1 + x2 + 3 lowers_A(x1,x2) = x1 + 2 greaters_A(x1,x2) = x1 + x2 + 1 nil_A() = 1 if_A(x1,x2,x3) = x3 <=_A(x1,x2) = x2 + 1 2. matrix interpretations: carrier: N^1 order: standard order interpretations: qsort#_A(x1) = x1 ._A(x1,x2) = x1 + 2 lowers_A(x1,x2) = 1 greaters_A(x1,x2) = x2 + 3 nil_A() = 2 if_A(x1,x2,x3) = 0 <=_A(x1,x2) = x2 + 1 The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: lowers#(x,.(y,z)) -> lowers#(x,z) and R consists of: r1: qsort(nil()) -> nil() r2: qsort(.(x,y)) -> ++(qsort(lowers(x,y)),.(x,qsort(greaters(x,y)))) r3: lowers(x,nil()) -> nil() r4: lowers(x,.(y,z)) -> if(<=(y,x),.(y,lowers(x,z)),lowers(x,z)) r5: greaters(x,nil()) -> nil() r6: greaters(x,.(y,z)) -> if(<=(y,x),greaters(x,z),.(y,greaters(x,z))) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: lowers#_A(x1,x2) = x1 + x2 ._A(x1,x2) = x1 + x2 + 1 2. matrix interpretations: carrier: N^1 order: standard order interpretations: lowers#_A(x1,x2) = x1 ._A(x1,x2) = x1 + x2 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: greaters#(x,.(y,z)) -> greaters#(x,z) and R consists of: r1: qsort(nil()) -> nil() r2: qsort(.(x,y)) -> ++(qsort(lowers(x,y)),.(x,qsort(greaters(x,y)))) r3: lowers(x,nil()) -> nil() r4: lowers(x,.(y,z)) -> if(<=(y,x),.(y,lowers(x,z)),lowers(x,z)) r5: greaters(x,nil()) -> nil() r6: greaters(x,.(y,z)) -> if(<=(y,x),greaters(x,z),.(y,greaters(x,z))) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: greaters#_A(x1,x2) = x1 + x2 ._A(x1,x2) = x1 + x2 + 1 2. matrix interpretations: carrier: N^1 order: standard order interpretations: greaters#_A(x1,x2) = x1 ._A(x1,x2) = x1 + x2 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.