YES We show the termination of the TRS R: a(a(x)) -> b(b(x)) b(b(a(x))) -> a(b(b(x))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a#(a(x)) -> b#(b(x)) p2: a#(a(x)) -> b#(x) p3: b#(b(a(x))) -> a#(b(b(x))) p4: b#(b(a(x))) -> b#(b(x)) p5: b#(b(a(x))) -> b#(x) and R consists of: r1: a(a(x)) -> b(b(x)) r2: b(b(a(x))) -> a(b(b(x))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a#(a(x)) -> b#(b(x)) p2: b#(b(a(x))) -> b#(x) p3: b#(b(a(x))) -> b#(b(x)) p4: b#(b(a(x))) -> a#(b(b(x))) p5: a#(a(x)) -> b#(x) and R consists of: r1: a(a(x)) -> b(b(x)) r2: b(b(a(x))) -> a(b(b(x))) The set of usable rules consists of r1, r2 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: a#_A(x1) = x1 a_A(x1) = x1 + 2 b#_A(x1) = x1 b_A(x1) = x1 + 1 2. matrix interpretations: carrier: N^1 order: standard order interpretations: a#_A(x1) = 2 a_A(x1) = 2 b#_A(x1) = x1 b_A(x1) = x1 + 1 The next rules are strictly ordered: p1, p2, p3, p4, p5 We remove them from the problem. Then no dependency pair remains.