YES We show the termination of the TRS R: if(true(),x,y) -> x if(false(),x,y) -> y if(x,y,y) -> y if(if(x,y,z),u(),v()) -> if(x,if(y,u(),v()),if(z,u(),v())) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: if#(if(x,y,z),u(),v()) -> if#(x,if(y,u(),v()),if(z,u(),v())) p2: if#(if(x,y,z),u(),v()) -> if#(y,u(),v()) p3: if#(if(x,y,z),u(),v()) -> if#(z,u(),v()) and R consists of: r1: if(true(),x,y) -> x r2: if(false(),x,y) -> y r3: if(x,y,y) -> y r4: if(if(x,y,z),u(),v()) -> if(x,if(y,u(),v()),if(z,u(),v())) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if#(if(x,y,z),u(),v()) -> if#(x,if(y,u(),v()),if(z,u(),v())) p2: if#(if(x,y,z),u(),v()) -> if#(z,u(),v()) p3: if#(if(x,y,z),u(),v()) -> if#(y,u(),v()) and R consists of: r1: if(true(),x,y) -> x r2: if(false(),x,y) -> y r3: if(x,y,y) -> y r4: if(if(x,y,z),u(),v()) -> if(x,if(y,u(),v()),if(z,u(),v())) The set of usable rules consists of r1, r2, r3, r4 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: if#_A(x1,x2,x3) = x1 + x2 + x3 if_A(x1,x2,x3) = x1 + x2 + x3 u_A() = 0 v_A() = 0 true_A() = 1 false_A() = 1 2. matrix interpretations: carrier: N^1 order: standard order interpretations: if#_A(x1,x2,x3) = x2 + x3 if_A(x1,x2,x3) = x3 u_A() = 2 v_A() = 1 true_A() = 1 false_A() = 1 The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: if#(if(x,y,z),u(),v()) -> if#(z,u(),v()) p2: if#(if(x,y,z),u(),v()) -> if#(y,u(),v()) and R consists of: r1: if(true(),x,y) -> x r2: if(false(),x,y) -> y r3: if(x,y,y) -> y r4: if(if(x,y,z),u(),v()) -> if(x,if(y,u(),v()),if(z,u(),v())) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if#(if(x,y,z),u(),v()) -> if#(z,u(),v()) p2: if#(if(x,y,z),u(),v()) -> if#(y,u(),v()) and R consists of: r1: if(true(),x,y) -> x r2: if(false(),x,y) -> y r3: if(x,y,y) -> y r4: if(if(x,y,z),u(),v()) -> if(x,if(y,u(),v()),if(z,u(),v())) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: if#_A(x1,x2,x3) = x1 + x2 + x3 if_A(x1,x2,x3) = x1 + x2 + x3 + 1 u_A() = 0 v_A() = 0 2. matrix interpretations: carrier: N^1 order: standard order interpretations: if#_A(x1,x2,x3) = x1 + x2 + x3 if_A(x1,x2,x3) = x1 + x2 + x3 + 1 u_A() = 0 v_A() = 0 The next rules are strictly ordered: p1, p2 r1, r2, r3, r4 We remove them from the problem. Then no dependency pair remains.