YES

We show the termination of the TRS R:

  not(true()) -> false()
  not(false()) -> true()
  odd(|0|()) -> false()
  odd(s(x)) -> not(odd(x))
  +(x,|0|()) -> x
  +(x,s(y)) -> s(+(x,y))
  +(s(x),y) -> s(+(x,y))

-- SCC decomposition.

Consider the dependency pair problem (P, R), where P consists of

p1: odd#(s(x)) -> not#(odd(x))
p2: odd#(s(x)) -> odd#(x)
p3: +#(x,s(y)) -> +#(x,y)
p4: +#(s(x),y) -> +#(x,y)

and R consists of:

r1: not(true()) -> false()
r2: not(false()) -> true()
r3: odd(|0|()) -> false()
r4: odd(s(x)) -> not(odd(x))
r5: +(x,|0|()) -> x
r6: +(x,s(y)) -> s(+(x,y))
r7: +(s(x),y) -> s(+(x,y))

The estimated dependency graph contains the following SCCs:

  {p2}
  {p3, p4}


-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: odd#(s(x)) -> odd#(x)

and R consists of:

r1: not(true()) -> false()
r2: not(false()) -> true()
r3: odd(|0|()) -> false()
r4: odd(s(x)) -> not(odd(x))
r5: +(x,|0|()) -> x
r6: +(x,s(y)) -> s(+(x,y))
r7: +(s(x),y) -> s(+(x,y))

The set of usable rules consists of

  (no rules)

Take the reduction pair:

  lexicographic combination of reduction pairs:
  
    1. matrix interpretations:
    
      carrier: N^1
      order: standard order
      interpretations:
        odd#_A(x1) = x1
        s_A(x1) = x1 + 1
    
    2. matrix interpretations:
    
      carrier: N^1
      order: standard order
      interpretations:
        odd#_A(x1) = 0
        s_A(x1) = x1 + 1
    

The next rules are strictly ordered:

  p1

We remove them from the problem.  Then no dependency pair remains.

-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: +#(x,s(y)) -> +#(x,y)
p2: +#(s(x),y) -> +#(x,y)

and R consists of:

r1: not(true()) -> false()
r2: not(false()) -> true()
r3: odd(|0|()) -> false()
r4: odd(s(x)) -> not(odd(x))
r5: +(x,|0|()) -> x
r6: +(x,s(y)) -> s(+(x,y))
r7: +(s(x),y) -> s(+(x,y))

The set of usable rules consists of

  (no rules)

Take the reduction pair:

  lexicographic combination of reduction pairs:
  
    1. matrix interpretations:
    
      carrier: N^1
      order: standard order
      interpretations:
        +#_A(x1,x2) = x1 + x2
        s_A(x1) = x1 + 1
    
    2. matrix interpretations:
    
      carrier: N^1
      order: standard order
      interpretations:
        +#_A(x1,x2) = 0
        s_A(x1) = x1 + 1
    

The next rules are strictly ordered:

  p1, p2

We remove them from the problem.  Then no dependency pair remains.