YES We show the termination of the TRS R: din(der(plus(X,Y))) -> u21(din(der(X)),X,Y) u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX) u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY)) din(der(times(X,Y))) -> u31(din(der(X)),X,Y) u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX) u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX))) din(der(der(X))) -> u41(din(der(X)),X) u41(dout(DX),X) -> u42(din(der(DX)),X,DX) u42(dout(DDX),X,DX) -> dout(DDX) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: din#(der(plus(X,Y))) -> u21#(din(der(X)),X,Y) p2: din#(der(plus(X,Y))) -> din#(der(X)) p3: u21#(dout(DX),X,Y) -> u22#(din(der(Y)),X,Y,DX) p4: u21#(dout(DX),X,Y) -> din#(der(Y)) p5: din#(der(times(X,Y))) -> u31#(din(der(X)),X,Y) p6: din#(der(times(X,Y))) -> din#(der(X)) p7: u31#(dout(DX),X,Y) -> u32#(din(der(Y)),X,Y,DX) p8: u31#(dout(DX),X,Y) -> din#(der(Y)) p9: din#(der(der(X))) -> u41#(din(der(X)),X) p10: din#(der(der(X))) -> din#(der(X)) p11: u41#(dout(DX),X) -> u42#(din(der(DX)),X,DX) p12: u41#(dout(DX),X) -> din#(der(DX)) and R consists of: r1: din(der(plus(X,Y))) -> u21(din(der(X)),X,Y) r2: u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX) r3: u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY)) r4: din(der(times(X,Y))) -> u31(din(der(X)),X,Y) r5: u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX) r6: u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX))) r7: din(der(der(X))) -> u41(din(der(X)),X) r8: u41(dout(DX),X) -> u42(din(der(DX)),X,DX) r9: u42(dout(DDX),X,DX) -> dout(DDX) The estimated dependency graph contains the following SCCs: {p1, p2, p4, p5, p6, p8, p9, p10, p12} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: din#(der(plus(X,Y))) -> u21#(din(der(X)),X,Y) p2: u21#(dout(DX),X,Y) -> din#(der(Y)) p3: din#(der(der(X))) -> din#(der(X)) p4: din#(der(der(X))) -> u41#(din(der(X)),X) p5: u41#(dout(DX),X) -> din#(der(DX)) p6: din#(der(times(X,Y))) -> din#(der(X)) p7: din#(der(times(X,Y))) -> u31#(din(der(X)),X,Y) p8: u31#(dout(DX),X,Y) -> din#(der(Y)) p9: din#(der(plus(X,Y))) -> din#(der(X)) and R consists of: r1: din(der(plus(X,Y))) -> u21(din(der(X)),X,Y) r2: u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX) r3: u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY)) r4: din(der(times(X,Y))) -> u31(din(der(X)),X,Y) r5: u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX) r6: u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX))) r7: din(der(der(X))) -> u41(din(der(X)),X) r8: u41(dout(DX),X) -> u42(din(der(DX)),X,DX) r9: u42(dout(DDX),X,DX) -> dout(DDX) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: din#_A(x1) = x1 + 1 der_A(x1) = 1 plus_A(x1,x2) = x1 + 1 u21#_A(x1,x2,x3) = x1 din_A(x1) = 1 dout_A(x1) = x1 + 5 u41#_A(x1,x2) = x1 times_A(x1,x2) = x2 + 1 u31#_A(x1,x2,x3) = x1 u22_A(x1,x2,x3,x4) = x1 + x4 + 2 u32_A(x1,x2,x3,x4) = x1 + x4 + 3 u42_A(x1,x2,x3) = x1 u21_A(x1,x2,x3) = x1 u31_A(x1,x2,x3) = x1 u41_A(x1,x2) = 1 2. matrix interpretations: carrier: N^1 order: standard order interpretations: din#_A(x1) = 1 der_A(x1) = 1 plus_A(x1,x2) = 1 u21#_A(x1,x2,x3) = 0 din_A(x1) = 5 dout_A(x1) = 2 u41#_A(x1,x2) = 2 times_A(x1,x2) = x2 + 1 u31#_A(x1,x2,x3) = 0 u22_A(x1,x2,x3,x4) = 0 u32_A(x1,x2,x3,x4) = x4 + 1 u42_A(x1,x2,x3) = 3 u21_A(x1,x2,x3) = 1 u31_A(x1,x2,x3) = 0 u41_A(x1,x2) = 4 The next rules are strictly ordered: p1, p2, p4, p5, p7, p8 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: din#(der(der(X))) -> din#(der(X)) p2: din#(der(times(X,Y))) -> din#(der(X)) p3: din#(der(plus(X,Y))) -> din#(der(X)) and R consists of: r1: din(der(plus(X,Y))) -> u21(din(der(X)),X,Y) r2: u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX) r3: u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY)) r4: din(der(times(X,Y))) -> u31(din(der(X)),X,Y) r5: u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX) r6: u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX))) r7: din(der(der(X))) -> u41(din(der(X)),X) r8: u41(dout(DX),X) -> u42(din(der(DX)),X,DX) r9: u42(dout(DDX),X,DX) -> dout(DDX) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: din#(der(der(X))) -> din#(der(X)) p2: din#(der(plus(X,Y))) -> din#(der(X)) p3: din#(der(times(X,Y))) -> din#(der(X)) and R consists of: r1: din(der(plus(X,Y))) -> u21(din(der(X)),X,Y) r2: u21(dout(DX),X,Y) -> u22(din(der(Y)),X,Y,DX) r3: u22(dout(DY),X,Y,DX) -> dout(plus(DX,DY)) r4: din(der(times(X,Y))) -> u31(din(der(X)),X,Y) r5: u31(dout(DX),X,Y) -> u32(din(der(Y)),X,Y,DX) r6: u32(dout(DY),X,Y,DX) -> dout(plus(times(X,DY),times(Y,DX))) r7: din(der(der(X))) -> u41(din(der(X)),X) r8: u41(dout(DX),X) -> u42(din(der(DX)),X,DX) r9: u42(dout(DDX),X,DX) -> dout(DDX) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: din#_A(x1) = x1 der_A(x1) = x1 + 1 plus_A(x1,x2) = x1 + x2 + 1 times_A(x1,x2) = x1 + x2 + 1 2. matrix interpretations: carrier: N^1 order: standard order interpretations: din#_A(x1) = x1 der_A(x1) = x1 + 1 plus_A(x1,x2) = x1 + x2 + 1 times_A(x1,x2) = x1 + x2 + 1 The next rules are strictly ordered: p1, p2, p3 r1, r2, r3, r4, r5, r6, r7, r8, r9 We remove them from the problem. Then no dependency pair remains.