YES We show the termination of the TRS R: ackin(s(X),s(Y)) -> u21(ackin(s(X),Y),X) u21(ackout(X),Y) -> u22(ackin(Y,X)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: ackin#(s(X),s(Y)) -> u21#(ackin(s(X),Y),X) p2: ackin#(s(X),s(Y)) -> ackin#(s(X),Y) p3: u21#(ackout(X),Y) -> ackin#(Y,X) and R consists of: r1: ackin(s(X),s(Y)) -> u21(ackin(s(X),Y),X) r2: u21(ackout(X),Y) -> u22(ackin(Y,X)) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ackin#(s(X),s(Y)) -> u21#(ackin(s(X),Y),X) p2: u21#(ackout(X),Y) -> ackin#(Y,X) p3: ackin#(s(X),s(Y)) -> ackin#(s(X),Y) and R consists of: r1: ackin(s(X),s(Y)) -> u21(ackin(s(X),Y),X) r2: u21(ackout(X),Y) -> u22(ackin(Y,X)) The set of usable rules consists of r1, r2 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: ackin#_A(x1,x2) = 3 s_A(x1) = 1 u21#_A(x1,x2) = x1 ackin_A(x1,x2) = 2 ackout_A(x1) = x1 + 4 u21_A(x1,x2) = 1 u22_A(x1) = 0 2. matrix interpretations: carrier: N^1 order: standard order interpretations: ackin#_A(x1,x2) = 0 s_A(x1) = 1 u21#_A(x1,x2) = 1 ackin_A(x1,x2) = 1 ackout_A(x1) = x1 + 1 u21_A(x1,x2) = 0 u22_A(x1) = 1 The next rules are strictly ordered: p1, p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: ackin#(s(X),s(Y)) -> ackin#(s(X),Y) and R consists of: r1: ackin(s(X),s(Y)) -> u21(ackin(s(X),Y),X) r2: u21(ackout(X),Y) -> u22(ackin(Y,X)) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ackin#(s(X),s(Y)) -> ackin#(s(X),Y) and R consists of: r1: ackin(s(X),s(Y)) -> u21(ackin(s(X),Y),X) r2: u21(ackout(X),Y) -> u22(ackin(Y,X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: ackin#_A(x1,x2) = x1 + x2 s_A(x1) = x1 + 1 2. matrix interpretations: carrier: N^1 order: standard order interpretations: ackin#_A(x1,x2) = x1 + x2 s_A(x1) = x1 + 1 The next rules are strictly ordered: p1 r1, r2 We remove them from the problem. Then no dependency pair remains.