YES We show the termination of the TRS R: f(cons(nil(),y)) -> y f(cons(f(cons(nil(),y)),z)) -> copy(n(),y,z) copy(|0|(),y,z) -> f(z) copy(s(x),y,z) -> copy(x,y,cons(f(y),z)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(cons(f(cons(nil(),y)),z)) -> copy#(n(),y,z) p2: copy#(|0|(),y,z) -> f#(z) p3: copy#(s(x),y,z) -> copy#(x,y,cons(f(y),z)) p4: copy#(s(x),y,z) -> f#(y) and R consists of: r1: f(cons(nil(),y)) -> y r2: f(cons(f(cons(nil(),y)),z)) -> copy(n(),y,z) r3: copy(|0|(),y,z) -> f(z) r4: copy(s(x),y,z) -> copy(x,y,cons(f(y),z)) The estimated dependency graph contains the following SCCs: {p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: copy#(s(x),y,z) -> copy#(x,y,cons(f(y),z)) and R consists of: r1: f(cons(nil(),y)) -> y r2: f(cons(f(cons(nil(),y)),z)) -> copy(n(),y,z) r3: copy(|0|(),y,z) -> f(z) r4: copy(s(x),y,z) -> copy(x,y,cons(f(y),z)) The set of usable rules consists of r1, r2 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: copy#_A(x1,x2,x3) = x1 + x2 + x3 s_A(x1) = x1 + 2 cons_A(x1,x2) = x2 + 1 f_A(x1) = x1 + 1 nil_A() = 1 copy_A(x1,x2,x3) = 0 n_A() = 1 2. matrix interpretations: carrier: N^1 order: standard order interpretations: copy#_A(x1,x2,x3) = x2 + x3 s_A(x1) = x1 + 1 cons_A(x1,x2) = 1 f_A(x1) = 1 nil_A() = 1 copy_A(x1,x2,x3) = 2 n_A() = 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.