YES We show the termination of the TRS R: p(a(x0),p(b(x1),p(a(x2),x3))) -> p(x2,p(a(a(x0)),p(b(x1),x3))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: p#(a(x0),p(b(x1),p(a(x2),x3))) -> p#(x2,p(a(a(x0)),p(b(x1),x3))) p2: p#(a(x0),p(b(x1),p(a(x2),x3))) -> p#(a(a(x0)),p(b(x1),x3)) p3: p#(a(x0),p(b(x1),p(a(x2),x3))) -> p#(b(x1),x3) and R consists of: r1: p(a(x0),p(b(x1),p(a(x2),x3))) -> p(x2,p(a(a(x0)),p(b(x1),x3))) The estimated dependency graph contains the following SCCs: {p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: p#(a(x0),p(b(x1),p(a(x2),x3))) -> p#(a(a(x0)),p(b(x1),x3)) and R consists of: r1: p(a(x0),p(b(x1),p(a(x2),x3))) -> p(x2,p(a(a(x0)),p(b(x1),x3))) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: p#_A(x1,x2) = x1 + x2 a_A(x1) = 1 p_A(x1,x2) = x2 + 1 b_A(x1) = x1 + 1 2. matrix interpretations: carrier: N^1 order: standard order interpretations: p#_A(x1,x2) = x1 a_A(x1) = 1 p_A(x1,x2) = x2 + 1 b_A(x1) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.