YES We show the termination of the TRS R: app(app(map(),f),nil()) -> nil() app(app(map(),f),app(app(cons(),x),xs)) -> app(app(cons(),app(f,x)),app(app(map(),f),xs)) app(sum(),app(app(cons(),x),xs)) -> app(app(plus(),x),app(sum(),xs)) app(size(),app(app(node(),x),xs)) -> app(s(),app(sum(),app(app(map(),size()),xs))) app(app(plus(),|0|()),x) -> |0|() app(app(plus(),app(s(),x)),y) -> app(s(),app(app(plus(),x),y)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(app(cons(),app(f,x)),app(app(map(),f),xs)) p2: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(cons(),app(f,x)) p3: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(f,x) p4: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(app(map(),f),xs) p5: app#(sum(),app(app(cons(),x),xs)) -> app#(app(plus(),x),app(sum(),xs)) p6: app#(sum(),app(app(cons(),x),xs)) -> app#(plus(),x) p7: app#(sum(),app(app(cons(),x),xs)) -> app#(sum(),xs) p8: app#(size(),app(app(node(),x),xs)) -> app#(s(),app(sum(),app(app(map(),size()),xs))) p9: app#(size(),app(app(node(),x),xs)) -> app#(sum(),app(app(map(),size()),xs)) p10: app#(size(),app(app(node(),x),xs)) -> app#(app(map(),size()),xs) p11: app#(size(),app(app(node(),x),xs)) -> app#(map(),size()) p12: app#(app(plus(),app(s(),x)),y) -> app#(s(),app(app(plus(),x),y)) p13: app#(app(plus(),app(s(),x)),y) -> app#(app(plus(),x),y) p14: app#(app(plus(),app(s(),x)),y) -> app#(plus(),x) and R consists of: r1: app(app(map(),f),nil()) -> nil() r2: app(app(map(),f),app(app(cons(),x),xs)) -> app(app(cons(),app(f,x)),app(app(map(),f),xs)) r3: app(sum(),app(app(cons(),x),xs)) -> app(app(plus(),x),app(sum(),xs)) r4: app(size(),app(app(node(),x),xs)) -> app(s(),app(sum(),app(app(map(),size()),xs))) r5: app(app(plus(),|0|()),x) -> |0|() r6: app(app(plus(),app(s(),x)),y) -> app(s(),app(app(plus(),x),y)) The estimated dependency graph contains the following SCCs: {p3, p4, p10} {p7} {p13} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(f,x) p2: app#(size(),app(app(node(),x),xs)) -> app#(app(map(),size()),xs) p3: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(app(map(),f),xs) and R consists of: r1: app(app(map(),f),nil()) -> nil() r2: app(app(map(),f),app(app(cons(),x),xs)) -> app(app(cons(),app(f,x)),app(app(map(),f),xs)) r3: app(sum(),app(app(cons(),x),xs)) -> app(app(plus(),x),app(sum(),xs)) r4: app(size(),app(app(node(),x),xs)) -> app(s(),app(sum(),app(app(map(),size()),xs))) r5: app(app(plus(),|0|()),x) -> |0|() r6: app(app(plus(),app(s(),x)),y) -> app(s(),app(app(plus(),x),y)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: app#_A(x1,x2) = x1 + x2 app_A(x1,x2) = x1 + x2 map_A() = 1 cons_A() = 1 size_A() = 1 node_A() = 2 2. matrix interpretations: carrier: N^1 order: standard order interpretations: app#_A(x1,x2) = x2 app_A(x1,x2) = 1 map_A() = 1 cons_A() = 0 size_A() = 1 node_A() = 0 The next rules are strictly ordered: p1, p2, p3 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: app#(sum(),app(app(cons(),x),xs)) -> app#(sum(),xs) and R consists of: r1: app(app(map(),f),nil()) -> nil() r2: app(app(map(),f),app(app(cons(),x),xs)) -> app(app(cons(),app(f,x)),app(app(map(),f),xs)) r3: app(sum(),app(app(cons(),x),xs)) -> app(app(plus(),x),app(sum(),xs)) r4: app(size(),app(app(node(),x),xs)) -> app(s(),app(sum(),app(app(map(),size()),xs))) r5: app(app(plus(),|0|()),x) -> |0|() r6: app(app(plus(),app(s(),x)),y) -> app(s(),app(app(plus(),x),y)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: app#_A(x1,x2) = x1 + x2 sum_A() = 0 app_A(x1,x2) = x2 + 1 cons_A() = 0 2. matrix interpretations: carrier: N^1 order: standard order interpretations: app#_A(x1,x2) = x1 + x2 sum_A() = 0 app_A(x1,x2) = x2 + 1 cons_A() = 0 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(plus(),app(s(),x)),y) -> app#(app(plus(),x),y) and R consists of: r1: app(app(map(),f),nil()) -> nil() r2: app(app(map(),f),app(app(cons(),x),xs)) -> app(app(cons(),app(f,x)),app(app(map(),f),xs)) r3: app(sum(),app(app(cons(),x),xs)) -> app(app(plus(),x),app(sum(),xs)) r4: app(size(),app(app(node(),x),xs)) -> app(s(),app(sum(),app(app(map(),size()),xs))) r5: app(app(plus(),|0|()),x) -> |0|() r6: app(app(plus(),app(s(),x)),y) -> app(s(),app(app(plus(),x),y)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: app#_A(x1,x2) = x1 + x2 app_A(x1,x2) = x2 + 1 plus_A() = 0 s_A() = 1 2. matrix interpretations: carrier: N^1 order: standard order interpretations: app#_A(x1,x2) = x1 + x2 app_A(x1,x2) = x2 + 1 plus_A() = 0 s_A() = 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.