YES We show the termination of the TRS R: app(app(and(),true()),true()) -> true() app(app(and(),x),false()) -> false() app(app(and(),false()),y) -> false() app(app(or(),true()),y) -> true() app(app(or(),x),true()) -> true() app(app(or(),false()),false()) -> false() app(app(forall(),p),nil()) -> true() app(app(forall(),p),app(app(cons(),x),xs)) -> app(app(and(),app(p,x)),app(app(forall(),p),xs)) app(app(forsome(),p),nil()) -> false() app(app(forsome(),p),app(app(cons(),x),xs)) -> app(app(or(),app(p,x)),app(app(forsome(),p),xs)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(forall(),p),app(app(cons(),x),xs)) -> app#(app(and(),app(p,x)),app(app(forall(),p),xs)) p2: app#(app(forall(),p),app(app(cons(),x),xs)) -> app#(and(),app(p,x)) p3: app#(app(forall(),p),app(app(cons(),x),xs)) -> app#(p,x) p4: app#(app(forall(),p),app(app(cons(),x),xs)) -> app#(app(forall(),p),xs) p5: app#(app(forsome(),p),app(app(cons(),x),xs)) -> app#(app(or(),app(p,x)),app(app(forsome(),p),xs)) p6: app#(app(forsome(),p),app(app(cons(),x),xs)) -> app#(or(),app(p,x)) p7: app#(app(forsome(),p),app(app(cons(),x),xs)) -> app#(p,x) p8: app#(app(forsome(),p),app(app(cons(),x),xs)) -> app#(app(forsome(),p),xs) and R consists of: r1: app(app(and(),true()),true()) -> true() r2: app(app(and(),x),false()) -> false() r3: app(app(and(),false()),y) -> false() r4: app(app(or(),true()),y) -> true() r5: app(app(or(),x),true()) -> true() r6: app(app(or(),false()),false()) -> false() r7: app(app(forall(),p),nil()) -> true() r8: app(app(forall(),p),app(app(cons(),x),xs)) -> app(app(and(),app(p,x)),app(app(forall(),p),xs)) r9: app(app(forsome(),p),nil()) -> false() r10: app(app(forsome(),p),app(app(cons(),x),xs)) -> app(app(or(),app(p,x)),app(app(forsome(),p),xs)) The estimated dependency graph contains the following SCCs: {p3, p4, p7, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(forall(),p),app(app(cons(),x),xs)) -> app#(p,x) p2: app#(app(forsome(),p),app(app(cons(),x),xs)) -> app#(app(forsome(),p),xs) p3: app#(app(forsome(),p),app(app(cons(),x),xs)) -> app#(p,x) p4: app#(app(forall(),p),app(app(cons(),x),xs)) -> app#(app(forall(),p),xs) and R consists of: r1: app(app(and(),true()),true()) -> true() r2: app(app(and(),x),false()) -> false() r3: app(app(and(),false()),y) -> false() r4: app(app(or(),true()),y) -> true() r5: app(app(or(),x),true()) -> true() r6: app(app(or(),false()),false()) -> false() r7: app(app(forall(),p),nil()) -> true() r8: app(app(forall(),p),app(app(cons(),x),xs)) -> app(app(and(),app(p,x)),app(app(forall(),p),xs)) r9: app(app(forsome(),p),nil()) -> false() r10: app(app(forsome(),p),app(app(cons(),x),xs)) -> app(app(or(),app(p,x)),app(app(forsome(),p),xs)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: app#_A(x1,x2) = x1 + x2 app_A(x1,x2) = x1 + x2 forall_A() = 1 cons_A() = 1 forsome_A() = 1 2. matrix interpretations: carrier: N^1 order: standard order interpretations: app#_A(x1,x2) = x1 + x2 app_A(x1,x2) = x2 + 1 forall_A() = 1 cons_A() = 0 forsome_A() = 1 The next rules are strictly ordered: p1, p2, p3, p4 We remove them from the problem. Then no dependency pair remains.