YES We show the termination of the TRS R: le(|0|(),y) -> true() le(s(x),|0|()) -> false() le(s(x),s(y)) -> le(x,y) minus(|0|(),y) -> |0|() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) if_minus(true(),s(x),y) -> |0|() if_minus(false(),s(x),y) -> s(minus(x,y)) mod(|0|(),y) -> |0|() mod(s(x),|0|()) -> |0|() mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) if_mod(false(),s(x),s(y)) -> s(x) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: le#(s(x),s(y)) -> le#(x,y) p2: minus#(s(x),y) -> if_minus#(le(s(x),y),s(x),y) p3: minus#(s(x),y) -> le#(s(x),y) p4: if_minus#(false(),s(x),y) -> minus#(x,y) p5: mod#(s(x),s(y)) -> if_mod#(le(y,x),s(x),s(y)) p6: mod#(s(x),s(y)) -> le#(y,x) p7: if_mod#(true(),s(x),s(y)) -> mod#(minus(x,y),s(y)) p8: if_mod#(true(),s(x),s(y)) -> minus#(x,y) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: minus(|0|(),y) -> |0|() r5: minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) r6: if_minus(true(),s(x),y) -> |0|() r7: if_minus(false(),s(x),y) -> s(minus(x,y)) r8: mod(|0|(),y) -> |0|() r9: mod(s(x),|0|()) -> |0|() r10: mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) r11: if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) r12: if_mod(false(),s(x),s(y)) -> s(x) The estimated dependency graph contains the following SCCs: {p5, p7} {p2, p4} {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if_mod#(true(),s(x),s(y)) -> mod#(minus(x,y),s(y)) p2: mod#(s(x),s(y)) -> if_mod#(le(y,x),s(x),s(y)) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: minus(|0|(),y) -> |0|() r5: minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) r6: if_minus(true(),s(x),y) -> |0|() r7: if_minus(false(),s(x),y) -> s(minus(x,y)) r8: mod(|0|(),y) -> |0|() r9: mod(s(x),|0|()) -> |0|() r10: mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) r11: if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) r12: if_mod(false(),s(x),s(y)) -> s(x) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: if_mod#_A(x1,x2,x3) = x2 true_A() = 1 s_A(x1) = x1 + 3 mod#_A(x1,x2) = x1 + 1 minus_A(x1,x2) = x1 + 1 le_A(x1,x2) = x1 if_minus_A(x1,x2,x3) = x2 + 1 |0|_A() = 2 false_A() = 1 2. matrix interpretations: carrier: N^1 order: standard order interpretations: if_mod#_A(x1,x2,x3) = 4 true_A() = 2 s_A(x1) = 1 mod#_A(x1,x2) = x1 minus_A(x1,x2) = 3 le_A(x1,x2) = 1 if_minus_A(x1,x2,x3) = 2 |0|_A() = 4 false_A() = 2 The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if_minus#(false(),s(x),y) -> minus#(x,y) p2: minus#(s(x),y) -> if_minus#(le(s(x),y),s(x),y) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: minus(|0|(),y) -> |0|() r5: minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) r6: if_minus(true(),s(x),y) -> |0|() r7: if_minus(false(),s(x),y) -> s(minus(x,y)) r8: mod(|0|(),y) -> |0|() r9: mod(s(x),|0|()) -> |0|() r10: mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) r11: if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) r12: if_mod(false(),s(x),s(y)) -> s(x) The set of usable rules consists of r1, r2, r3 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: if_minus#_A(x1,x2,x3) = x2 false_A() = 1 s_A(x1) = x1 + 2 minus#_A(x1,x2) = x1 + 1 le_A(x1,x2) = x1 + x2 |0|_A() = 1 true_A() = 0 2. matrix interpretations: carrier: N^1 order: standard order interpretations: if_minus#_A(x1,x2,x3) = 0 false_A() = 3 s_A(x1) = x1 + 1 minus#_A(x1,x2) = x1 + 1 le_A(x1,x2) = x1 + x2 |0|_A() = 1 true_A() = 2 The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: le#(s(x),s(y)) -> le#(x,y) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: minus(|0|(),y) -> |0|() r5: minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) r6: if_minus(true(),s(x),y) -> |0|() r7: if_minus(false(),s(x),y) -> s(minus(x,y)) r8: mod(|0|(),y) -> |0|() r9: mod(s(x),|0|()) -> |0|() r10: mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) r11: if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) r12: if_mod(false(),s(x),s(y)) -> s(x) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: le#_A(x1,x2) = x1 + x2 s_A(x1) = x1 + 1 2. matrix interpretations: carrier: N^1 order: standard order interpretations: le#_A(x1,x2) = 0 s_A(x1) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.