YES We show the termination of the TRS R: f(g(x)) -> g(f(f(x))) f(h(x)) -> h(g(x)) |f'|(s(x),y,y) -> |f'|(y,x,s(x)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(g(x)) -> f#(f(x)) p2: f#(g(x)) -> f#(x) p3: |f'|#(s(x),y,y) -> |f'|#(y,x,s(x)) and R consists of: r1: f(g(x)) -> g(f(f(x))) r2: f(h(x)) -> h(g(x)) r3: |f'|(s(x),y,y) -> |f'|(y,x,s(x)) The estimated dependency graph contains the following SCCs: {p1, p2} {p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(g(x)) -> f#(f(x)) p2: f#(g(x)) -> f#(x) and R consists of: r1: f(g(x)) -> g(f(f(x))) r2: f(h(x)) -> h(g(x)) r3: |f'|(s(x),y,y) -> |f'|(y,x,s(x)) The set of usable rules consists of r1, r2 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: f#_A(x1) = x1 g_A(x1) = x1 + 1 f_A(x1) = x1 h_A(x1) = 1 2. matrix interpretations: carrier: N^1 order: standard order interpretations: f#_A(x1) = x1 g_A(x1) = 1 f_A(x1) = 2 h_A(x1) = 1 The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: |f'|#(s(x),y,y) -> |f'|#(y,x,s(x)) and R consists of: r1: f(g(x)) -> g(f(f(x))) r2: f(h(x)) -> h(g(x)) r3: |f'|(s(x),y,y) -> |f'|(y,x,s(x)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: |f'|#_A(x1,x2,x3) = x1 + x2 s_A(x1) = x1 + 1 2. matrix interpretations: carrier: N^1 order: standard order interpretations: |f'|#_A(x1,x2,x3) = x1 s_A(x1) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.