YES

We show the termination of the TRS R:

  f(|0|(),|1|(),x) -> f(s(x),x,x)
  f(x,y,s(z)) -> s(f(|0|(),|1|(),z))

-- SCC decomposition.

Consider the dependency pair problem (P, R), where P consists of

p1: f#(|0|(),|1|(),x) -> f#(s(x),x,x)
p2: f#(x,y,s(z)) -> f#(|0|(),|1|(),z)

and R consists of:

r1: f(|0|(),|1|(),x) -> f(s(x),x,x)
r2: f(x,y,s(z)) -> s(f(|0|(),|1|(),z))

The estimated dependency graph contains the following SCCs:

  {p1, p2}


-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: f#(|0|(),|1|(),x) -> f#(s(x),x,x)
p2: f#(x,y,s(z)) -> f#(|0|(),|1|(),z)

and R consists of:

r1: f(|0|(),|1|(),x) -> f(s(x),x,x)
r2: f(x,y,s(z)) -> s(f(|0|(),|1|(),z))

The set of usable rules consists of

  (no rules)

Take the reduction pair:

  lexicographic combination of reduction pairs:
  
    1. matrix interpretations:
    
      carrier: N^1
      order: standard order
      interpretations:
        f#_A(x1,x2,x3) = x3
        |0|_A() = 1
        |1|_A() = 1
        s_A(x1) = x1 + 1
    
    2. matrix interpretations:
    
      carrier: N^1
      order: standard order
      interpretations:
        f#_A(x1,x2,x3) = x3
        |0|_A() = 1
        |1|_A() = 1
        s_A(x1) = x1 + 1
    

The next rules are strictly ordered:

  p2

We remove them from the problem.

-- SCC decomposition.

Consider the dependency pair problem (P, R), where P consists of

p1: f#(|0|(),|1|(),x) -> f#(s(x),x,x)

and R consists of:

r1: f(|0|(),|1|(),x) -> f(s(x),x,x)
r2: f(x,y,s(z)) -> s(f(|0|(),|1|(),z))

The estimated dependency graph contains the following SCCs:

  (no SCCs)