YES

We show the termination of the TRS R:

  app(nil(),k) -> k
  app(l,nil()) -> l
  app(cons(x,l),k) -> cons(x,app(l,k))
  sum(cons(x,nil())) -> cons(x,nil())
  sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l))
  sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k)))))
  plus(|0|(),y) -> y
  plus(s(x),y) -> s(plus(x,y))
  sum(plus(cons(|0|(),x),cons(y,l))) -> pred(sum(cons(s(x),cons(y,l))))
  pred(cons(s(x),nil())) -> cons(x,nil())

-- SCC decomposition.

Consider the dependency pair problem (P, R), where P consists of

p1: app#(cons(x,l),k) -> app#(l,k)
p2: sum#(cons(x,cons(y,l))) -> sum#(cons(plus(x,y),l))
p3: sum#(cons(x,cons(y,l))) -> plus#(x,y)
p4: sum#(app(l,cons(x,cons(y,k)))) -> sum#(app(l,sum(cons(x,cons(y,k)))))
p5: sum#(app(l,cons(x,cons(y,k)))) -> app#(l,sum(cons(x,cons(y,k))))
p6: sum#(app(l,cons(x,cons(y,k)))) -> sum#(cons(x,cons(y,k)))
p7: plus#(s(x),y) -> plus#(x,y)
p8: sum#(plus(cons(|0|(),x),cons(y,l))) -> pred#(sum(cons(s(x),cons(y,l))))
p9: sum#(plus(cons(|0|(),x),cons(y,l))) -> sum#(cons(s(x),cons(y,l)))

and R consists of:

r1: app(nil(),k) -> k
r2: app(l,nil()) -> l
r3: app(cons(x,l),k) -> cons(x,app(l,k))
r4: sum(cons(x,nil())) -> cons(x,nil())
r5: sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l))
r6: sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k)))))
r7: plus(|0|(),y) -> y
r8: plus(s(x),y) -> s(plus(x,y))
r9: sum(plus(cons(|0|(),x),cons(y,l))) -> pred(sum(cons(s(x),cons(y,l))))
r10: pred(cons(s(x),nil())) -> cons(x,nil())

The estimated dependency graph contains the following SCCs:

  {p4}
  {p1}
  {p2}
  {p7}


-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: sum#(app(l,cons(x,cons(y,k)))) -> sum#(app(l,sum(cons(x,cons(y,k)))))

and R consists of:

r1: app(nil(),k) -> k
r2: app(l,nil()) -> l
r3: app(cons(x,l),k) -> cons(x,app(l,k))
r4: sum(cons(x,nil())) -> cons(x,nil())
r5: sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l))
r6: sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k)))))
r7: plus(|0|(),y) -> y
r8: plus(s(x),y) -> s(plus(x,y))
r9: sum(plus(cons(|0|(),x),cons(y,l))) -> pred(sum(cons(s(x),cons(y,l))))
r10: pred(cons(s(x),nil())) -> cons(x,nil())

The set of usable rules consists of

  r1, r2, r3, r4, r5, r7, r8

Take the reduction pair:

  lexicographic combination of reduction pairs:
  
    1. matrix interpretations:
    
      carrier: N^1
      order: standard order
      interpretations:
        sum#_A(x1) = x1
        app_A(x1,x2) = x1 + x2 + 1
        cons_A(x1,x2) = x2
        sum_A(x1) = 0
        nil_A() = 0
        plus_A(x1,x2) = x1 + x2 + 1
        |0|_A() = 1
        s_A(x1) = 1
    
    2. matrix interpretations:
    
      carrier: N^1
      order: standard order
      interpretations:
        sum#_A(x1) = x1
        app_A(x1,x2) = x1 + x2 + 1
        cons_A(x1,x2) = x2 + 3
        sum_A(x1) = 5
        nil_A() = 1
        plus_A(x1,x2) = x1 + x2 + 1
        |0|_A() = 1
        s_A(x1) = 1
    

The next rules are strictly ordered:

  p1

We remove them from the problem.  Then no dependency pair remains.

-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: app#(cons(x,l),k) -> app#(l,k)

and R consists of:

r1: app(nil(),k) -> k
r2: app(l,nil()) -> l
r3: app(cons(x,l),k) -> cons(x,app(l,k))
r4: sum(cons(x,nil())) -> cons(x,nil())
r5: sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l))
r6: sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k)))))
r7: plus(|0|(),y) -> y
r8: plus(s(x),y) -> s(plus(x,y))
r9: sum(plus(cons(|0|(),x),cons(y,l))) -> pred(sum(cons(s(x),cons(y,l))))
r10: pred(cons(s(x),nil())) -> cons(x,nil())

The set of usable rules consists of

  (no rules)

Take the reduction pair:

  lexicographic combination of reduction pairs:
  
    1. matrix interpretations:
    
      carrier: N^1
      order: standard order
      interpretations:
        app#_A(x1,x2) = x1 + x2
        cons_A(x1,x2) = x1 + x2 + 1
    
    2. matrix interpretations:
    
      carrier: N^1
      order: standard order
      interpretations:
        app#_A(x1,x2) = x2
        cons_A(x1,x2) = x1 + x2 + 1
    

The next rules are strictly ordered:

  p1

We remove them from the problem.  Then no dependency pair remains.

-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: sum#(cons(x,cons(y,l))) -> sum#(cons(plus(x,y),l))

and R consists of:

r1: app(nil(),k) -> k
r2: app(l,nil()) -> l
r3: app(cons(x,l),k) -> cons(x,app(l,k))
r4: sum(cons(x,nil())) -> cons(x,nil())
r5: sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l))
r6: sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k)))))
r7: plus(|0|(),y) -> y
r8: plus(s(x),y) -> s(plus(x,y))
r9: sum(plus(cons(|0|(),x),cons(y,l))) -> pred(sum(cons(s(x),cons(y,l))))
r10: pred(cons(s(x),nil())) -> cons(x,nil())

The set of usable rules consists of

  r7, r8

Take the reduction pair:

  lexicographic combination of reduction pairs:
  
    1. matrix interpretations:
    
      carrier: N^1
      order: standard order
      interpretations:
        sum#_A(x1) = x1
        cons_A(x1,x2) = x1 + x2 + 2
        plus_A(x1,x2) = x1 + x2 + 1
        |0|_A() = 1
        s_A(x1) = 1
    
    2. matrix interpretations:
    
      carrier: N^1
      order: standard order
      interpretations:
        sum#_A(x1) = x1
        cons_A(x1,x2) = x1 + x2 + 1
        plus_A(x1,x2) = x2 + 2
        |0|_A() = 1
        s_A(x1) = 1
    

The next rules are strictly ordered:

  p1

We remove them from the problem.  Then no dependency pair remains.

-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: plus#(s(x),y) -> plus#(x,y)

and R consists of:

r1: app(nil(),k) -> k
r2: app(l,nil()) -> l
r3: app(cons(x,l),k) -> cons(x,app(l,k))
r4: sum(cons(x,nil())) -> cons(x,nil())
r5: sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l))
r6: sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k)))))
r7: plus(|0|(),y) -> y
r8: plus(s(x),y) -> s(plus(x,y))
r9: sum(plus(cons(|0|(),x),cons(y,l))) -> pred(sum(cons(s(x),cons(y,l))))
r10: pred(cons(s(x),nil())) -> cons(x,nil())

The set of usable rules consists of

  (no rules)

Take the monotone reduction pair:

  lexicographic combination of reduction pairs:
  
    1. matrix interpretations:
    
      carrier: N^1
      order: standard order
      interpretations:
        plus#_A(x1,x2) = x1 + x2
        s_A(x1) = x1 + 1
    
    2. matrix interpretations:
    
      carrier: N^1
      order: standard order
      interpretations:
        plus#_A(x1,x2) = x1 + x2
        s_A(x1) = x1 + 1
    

The next rules are strictly ordered:

  p1
  r1, r2, r3, r4, r5, r6, r7, r8, r9, r10

We remove them from the problem.  Then no dependency pair remains.