YES We show the termination of the TRS R: a(f(),a(f(),x)) -> a(x,x) a(h(),x) -> a(f(),a(g(),a(f(),x))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a#(f(),a(f(),x)) -> a#(x,x) p2: a#(h(),x) -> a#(f(),a(g(),a(f(),x))) p3: a#(h(),x) -> a#(g(),a(f(),x)) p4: a#(h(),x) -> a#(f(),x) and R consists of: r1: a(f(),a(f(),x)) -> a(x,x) r2: a(h(),x) -> a(f(),a(g(),a(f(),x))) The estimated dependency graph contains the following SCCs: {p1, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a#(f(),a(f(),x)) -> a#(x,x) p2: a#(h(),x) -> a#(f(),x) and R consists of: r1: a(f(),a(f(),x)) -> a(x,x) r2: a(h(),x) -> a(f(),a(g(),a(f(),x))) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: a#_A(x1,x2) = x2 f_A() = 1 a_A(x1,x2) = x2 + 1 h_A() = 2 The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a#(h(),x) -> a#(f(),x) and R consists of: r1: a(f(),a(f(),x)) -> a(x,x) r2: a(h(),x) -> a(f(),a(g(),a(f(),x))) The estimated dependency graph contains the following SCCs: (no SCCs)