YES We show the termination of the TRS R: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) active(__(X,nil())) -> mark(X) active(__(nil(),X)) -> mark(X) active(U11(tt())) -> mark(tt()) active(U21(tt(),V2)) -> mark(U22(isList(V2))) active(U22(tt())) -> mark(tt()) active(U31(tt())) -> mark(tt()) active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) active(U42(tt())) -> mark(tt()) active(U51(tt(),V2)) -> mark(U52(isList(V2))) active(U52(tt())) -> mark(tt()) active(U61(tt())) -> mark(tt()) active(U71(tt(),P)) -> mark(U72(isPal(P))) active(U72(tt())) -> mark(tt()) active(U81(tt())) -> mark(tt()) active(isList(V)) -> mark(U11(isNeList(V))) active(isList(nil())) -> mark(tt()) active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) active(isNeList(V)) -> mark(U31(isQid(V))) active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) active(isNePal(V)) -> mark(U61(isQid(V))) active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) active(isPal(V)) -> mark(U81(isNePal(V))) active(isPal(nil())) -> mark(tt()) active(isQid(a())) -> mark(tt()) active(isQid(e())) -> mark(tt()) active(isQid(i())) -> mark(tt()) active(isQid(o())) -> mark(tt()) active(isQid(u())) -> mark(tt()) mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) mark(nil()) -> active(nil()) mark(U11(X)) -> active(U11(mark(X))) mark(tt()) -> active(tt()) mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) mark(U22(X)) -> active(U22(mark(X))) mark(isList(X)) -> active(isList(X)) mark(U31(X)) -> active(U31(mark(X))) mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) mark(U42(X)) -> active(U42(mark(X))) mark(isNeList(X)) -> active(isNeList(X)) mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) mark(U52(X)) -> active(U52(mark(X))) mark(U61(X)) -> active(U61(mark(X))) mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) mark(U72(X)) -> active(U72(mark(X))) mark(isPal(X)) -> active(isPal(X)) mark(U81(X)) -> active(U81(mark(X))) mark(isQid(X)) -> active(isQid(X)) mark(isNePal(X)) -> active(isNePal(X)) mark(a()) -> active(a()) mark(e()) -> active(e()) mark(i()) -> active(i()) mark(o()) -> active(o()) mark(u()) -> active(u()) __(mark(X1),X2) -> __(X1,X2) __(X1,mark(X2)) -> __(X1,X2) __(active(X1),X2) -> __(X1,X2) __(X1,active(X2)) -> __(X1,X2) U11(mark(X)) -> U11(X) U11(active(X)) -> U11(X) U21(mark(X1),X2) -> U21(X1,X2) U21(X1,mark(X2)) -> U21(X1,X2) U21(active(X1),X2) -> U21(X1,X2) U21(X1,active(X2)) -> U21(X1,X2) U22(mark(X)) -> U22(X) U22(active(X)) -> U22(X) isList(mark(X)) -> isList(X) isList(active(X)) -> isList(X) U31(mark(X)) -> U31(X) U31(active(X)) -> U31(X) U41(mark(X1),X2) -> U41(X1,X2) U41(X1,mark(X2)) -> U41(X1,X2) U41(active(X1),X2) -> U41(X1,X2) U41(X1,active(X2)) -> U41(X1,X2) U42(mark(X)) -> U42(X) U42(active(X)) -> U42(X) isNeList(mark(X)) -> isNeList(X) isNeList(active(X)) -> isNeList(X) U51(mark(X1),X2) -> U51(X1,X2) U51(X1,mark(X2)) -> U51(X1,X2) U51(active(X1),X2) -> U51(X1,X2) U51(X1,active(X2)) -> U51(X1,X2) U52(mark(X)) -> U52(X) U52(active(X)) -> U52(X) U61(mark(X)) -> U61(X) U61(active(X)) -> U61(X) U71(mark(X1),X2) -> U71(X1,X2) U71(X1,mark(X2)) -> U71(X1,X2) U71(active(X1),X2) -> U71(X1,X2) U71(X1,active(X2)) -> U71(X1,X2) U72(mark(X)) -> U72(X) U72(active(X)) -> U72(X) isPal(mark(X)) -> isPal(X) isPal(active(X)) -> isPal(X) U81(mark(X)) -> U81(X) U81(active(X)) -> U81(X) isQid(mark(X)) -> isQid(X) isQid(active(X)) -> isQid(X) isNePal(mark(X)) -> isNePal(X) isNePal(active(X)) -> isNePal(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(__(__(X,Y),Z)) -> mark#(__(X,__(Y,Z))) p2: active#(__(__(X,Y),Z)) -> __#(X,__(Y,Z)) p3: active#(__(__(X,Y),Z)) -> __#(Y,Z) p4: active#(__(X,nil())) -> mark#(X) p5: active#(__(nil(),X)) -> mark#(X) p6: active#(U11(tt())) -> mark#(tt()) p7: active#(U21(tt(),V2)) -> mark#(U22(isList(V2))) p8: active#(U21(tt(),V2)) -> U22#(isList(V2)) p9: active#(U21(tt(),V2)) -> isList#(V2) p10: active#(U22(tt())) -> mark#(tt()) p11: active#(U31(tt())) -> mark#(tt()) p12: active#(U41(tt(),V2)) -> mark#(U42(isNeList(V2))) p13: active#(U41(tt(),V2)) -> U42#(isNeList(V2)) p14: active#(U41(tt(),V2)) -> isNeList#(V2) p15: active#(U42(tt())) -> mark#(tt()) p16: active#(U51(tt(),V2)) -> mark#(U52(isList(V2))) p17: active#(U51(tt(),V2)) -> U52#(isList(V2)) p18: active#(U51(tt(),V2)) -> isList#(V2) p19: active#(U52(tt())) -> mark#(tt()) p20: active#(U61(tt())) -> mark#(tt()) p21: active#(U71(tt(),P)) -> mark#(U72(isPal(P))) p22: active#(U71(tt(),P)) -> U72#(isPal(P)) p23: active#(U71(tt(),P)) -> isPal#(P) p24: active#(U72(tt())) -> mark#(tt()) p25: active#(U81(tt())) -> mark#(tt()) p26: active#(isList(V)) -> mark#(U11(isNeList(V))) p27: active#(isList(V)) -> U11#(isNeList(V)) p28: active#(isList(V)) -> isNeList#(V) p29: active#(isList(nil())) -> mark#(tt()) p30: active#(isList(__(V1,V2))) -> mark#(U21(isList(V1),V2)) p31: active#(isList(__(V1,V2))) -> U21#(isList(V1),V2) p32: active#(isList(__(V1,V2))) -> isList#(V1) p33: active#(isNeList(V)) -> mark#(U31(isQid(V))) p34: active#(isNeList(V)) -> U31#(isQid(V)) p35: active#(isNeList(V)) -> isQid#(V) p36: active#(isNeList(__(V1,V2))) -> mark#(U41(isList(V1),V2)) p37: active#(isNeList(__(V1,V2))) -> U41#(isList(V1),V2) p38: active#(isNeList(__(V1,V2))) -> isList#(V1) p39: active#(isNeList(__(V1,V2))) -> mark#(U51(isNeList(V1),V2)) p40: active#(isNeList(__(V1,V2))) -> U51#(isNeList(V1),V2) p41: active#(isNeList(__(V1,V2))) -> isNeList#(V1) p42: active#(isNePal(V)) -> mark#(U61(isQid(V))) p43: active#(isNePal(V)) -> U61#(isQid(V)) p44: active#(isNePal(V)) -> isQid#(V) p45: active#(isNePal(__(I,__(P,I)))) -> mark#(U71(isQid(I),P)) p46: active#(isNePal(__(I,__(P,I)))) -> U71#(isQid(I),P) p47: active#(isNePal(__(I,__(P,I)))) -> isQid#(I) p48: active#(isPal(V)) -> mark#(U81(isNePal(V))) p49: active#(isPal(V)) -> U81#(isNePal(V)) p50: active#(isPal(V)) -> isNePal#(V) p51: active#(isPal(nil())) -> mark#(tt()) p52: active#(isQid(a())) -> mark#(tt()) p53: active#(isQid(e())) -> mark#(tt()) p54: active#(isQid(i())) -> mark#(tt()) p55: active#(isQid(o())) -> mark#(tt()) p56: active#(isQid(u())) -> mark#(tt()) p57: mark#(__(X1,X2)) -> active#(__(mark(X1),mark(X2))) p58: mark#(__(X1,X2)) -> __#(mark(X1),mark(X2)) p59: mark#(__(X1,X2)) -> mark#(X1) p60: mark#(__(X1,X2)) -> mark#(X2) p61: mark#(nil()) -> active#(nil()) p62: mark#(U11(X)) -> active#(U11(mark(X))) p63: mark#(U11(X)) -> U11#(mark(X)) p64: mark#(U11(X)) -> mark#(X) p65: mark#(tt()) -> active#(tt()) p66: mark#(U21(X1,X2)) -> active#(U21(mark(X1),X2)) p67: mark#(U21(X1,X2)) -> U21#(mark(X1),X2) p68: mark#(U21(X1,X2)) -> mark#(X1) p69: mark#(U22(X)) -> active#(U22(mark(X))) p70: mark#(U22(X)) -> U22#(mark(X)) p71: mark#(U22(X)) -> mark#(X) p72: mark#(isList(X)) -> active#(isList(X)) p73: mark#(U31(X)) -> active#(U31(mark(X))) p74: mark#(U31(X)) -> U31#(mark(X)) p75: mark#(U31(X)) -> mark#(X) p76: mark#(U41(X1,X2)) -> active#(U41(mark(X1),X2)) p77: mark#(U41(X1,X2)) -> U41#(mark(X1),X2) p78: mark#(U41(X1,X2)) -> mark#(X1) p79: mark#(U42(X)) -> active#(U42(mark(X))) p80: mark#(U42(X)) -> U42#(mark(X)) p81: mark#(U42(X)) -> mark#(X) p82: mark#(isNeList(X)) -> active#(isNeList(X)) p83: mark#(U51(X1,X2)) -> active#(U51(mark(X1),X2)) p84: mark#(U51(X1,X2)) -> U51#(mark(X1),X2) p85: mark#(U51(X1,X2)) -> mark#(X1) p86: mark#(U52(X)) -> active#(U52(mark(X))) p87: mark#(U52(X)) -> U52#(mark(X)) p88: mark#(U52(X)) -> mark#(X) p89: mark#(U61(X)) -> active#(U61(mark(X))) p90: mark#(U61(X)) -> U61#(mark(X)) p91: mark#(U61(X)) -> mark#(X) p92: mark#(U71(X1,X2)) -> active#(U71(mark(X1),X2)) p93: mark#(U71(X1,X2)) -> U71#(mark(X1),X2) p94: mark#(U71(X1,X2)) -> mark#(X1) p95: mark#(U72(X)) -> active#(U72(mark(X))) p96: mark#(U72(X)) -> U72#(mark(X)) p97: mark#(U72(X)) -> mark#(X) p98: mark#(isPal(X)) -> active#(isPal(X)) p99: mark#(U81(X)) -> active#(U81(mark(X))) p100: mark#(U81(X)) -> U81#(mark(X)) p101: mark#(U81(X)) -> mark#(X) p102: mark#(isQid(X)) -> active#(isQid(X)) p103: mark#(isNePal(X)) -> active#(isNePal(X)) p104: mark#(a()) -> active#(a()) p105: mark#(e()) -> active#(e()) p106: mark#(i()) -> active#(i()) p107: mark#(o()) -> active#(o()) p108: mark#(u()) -> active#(u()) p109: __#(mark(X1),X2) -> __#(X1,X2) p110: __#(X1,mark(X2)) -> __#(X1,X2) p111: __#(active(X1),X2) -> __#(X1,X2) p112: __#(X1,active(X2)) -> __#(X1,X2) p113: U11#(mark(X)) -> U11#(X) p114: U11#(active(X)) -> U11#(X) p115: U21#(mark(X1),X2) -> U21#(X1,X2) p116: U21#(X1,mark(X2)) -> U21#(X1,X2) p117: U21#(active(X1),X2) -> U21#(X1,X2) p118: U21#(X1,active(X2)) -> U21#(X1,X2) p119: U22#(mark(X)) -> U22#(X) p120: U22#(active(X)) -> U22#(X) p121: isList#(mark(X)) -> isList#(X) p122: isList#(active(X)) -> isList#(X) p123: U31#(mark(X)) -> U31#(X) p124: U31#(active(X)) -> U31#(X) p125: U41#(mark(X1),X2) -> U41#(X1,X2) p126: U41#(X1,mark(X2)) -> U41#(X1,X2) p127: U41#(active(X1),X2) -> U41#(X1,X2) p128: U41#(X1,active(X2)) -> U41#(X1,X2) p129: U42#(mark(X)) -> U42#(X) p130: U42#(active(X)) -> U42#(X) p131: isNeList#(mark(X)) -> isNeList#(X) p132: isNeList#(active(X)) -> isNeList#(X) p133: U51#(mark(X1),X2) -> U51#(X1,X2) p134: U51#(X1,mark(X2)) -> U51#(X1,X2) p135: U51#(active(X1),X2) -> U51#(X1,X2) p136: U51#(X1,active(X2)) -> U51#(X1,X2) p137: U52#(mark(X)) -> U52#(X) p138: U52#(active(X)) -> U52#(X) p139: U61#(mark(X)) -> U61#(X) p140: U61#(active(X)) -> U61#(X) p141: U71#(mark(X1),X2) -> U71#(X1,X2) p142: U71#(X1,mark(X2)) -> U71#(X1,X2) p143: U71#(active(X1),X2) -> U71#(X1,X2) p144: U71#(X1,active(X2)) -> U71#(X1,X2) p145: U72#(mark(X)) -> U72#(X) p146: U72#(active(X)) -> U72#(X) p147: isPal#(mark(X)) -> isPal#(X) p148: isPal#(active(X)) -> isPal#(X) p149: U81#(mark(X)) -> U81#(X) p150: U81#(active(X)) -> U81#(X) p151: isQid#(mark(X)) -> isQid#(X) p152: isQid#(active(X)) -> isQid#(X) p153: isNePal#(mark(X)) -> isNePal#(X) p154: isNePal#(active(X)) -> isNePal#(X) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The estimated dependency graph contains the following SCCs: {p1, p4, p5, p7, p12, p16, p21, p26, p30, p33, p36, p39, p42, p45, p48, p57, p59, p60, p62, p64, p66, p68, p69, p71, p72, p73, p75, p76, p78, p79, p81, p82, p83, p85, p86, p88, p89, p91, p92, p94, p95, p97, p98, p99, p101, p102, p103} {p109, p110, p111, p112} {p119, p120} {p121, p122} {p129, p130} {p131, p132} {p137, p138} {p145, p146} {p147, p148} {p113, p114} {p115, p116, p117, p118} {p123, p124} {p151, p152} {p125, p126, p127, p128} {p133, p134, p135, p136} {p139, p140} {p141, p142, p143, p144} {p149, p150} {p153, p154} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(__(__(X,Y),Z)) -> mark#(__(X,__(Y,Z))) p2: mark#(isNePal(X)) -> active#(isNePal(X)) p3: active#(isPal(V)) -> mark#(U81(isNePal(V))) p4: mark#(isQid(X)) -> active#(isQid(X)) p5: active#(isNePal(__(I,__(P,I)))) -> mark#(U71(isQid(I),P)) p6: mark#(U81(X)) -> mark#(X) p7: mark#(U81(X)) -> active#(U81(mark(X))) p8: active#(isNePal(V)) -> mark#(U61(isQid(V))) p9: mark#(isPal(X)) -> active#(isPal(X)) p10: active#(isNeList(__(V1,V2))) -> mark#(U51(isNeList(V1),V2)) p11: mark#(U72(X)) -> mark#(X) p12: mark#(U72(X)) -> active#(U72(mark(X))) p13: active#(isNeList(__(V1,V2))) -> mark#(U41(isList(V1),V2)) p14: mark#(U71(X1,X2)) -> mark#(X1) p15: mark#(U71(X1,X2)) -> active#(U71(mark(X1),X2)) p16: active#(isNeList(V)) -> mark#(U31(isQid(V))) p17: mark#(U61(X)) -> mark#(X) p18: mark#(U61(X)) -> active#(U61(mark(X))) p19: active#(isList(__(V1,V2))) -> mark#(U21(isList(V1),V2)) p20: mark#(U52(X)) -> mark#(X) p21: mark#(U52(X)) -> active#(U52(mark(X))) p22: active#(isList(V)) -> mark#(U11(isNeList(V))) p23: mark#(U51(X1,X2)) -> mark#(X1) p24: mark#(U51(X1,X2)) -> active#(U51(mark(X1),X2)) p25: active#(U71(tt(),P)) -> mark#(U72(isPal(P))) p26: mark#(isNeList(X)) -> active#(isNeList(X)) p27: active#(U51(tt(),V2)) -> mark#(U52(isList(V2))) p28: mark#(U42(X)) -> mark#(X) p29: mark#(U42(X)) -> active#(U42(mark(X))) p30: active#(U41(tt(),V2)) -> mark#(U42(isNeList(V2))) p31: mark#(U41(X1,X2)) -> mark#(X1) p32: mark#(U41(X1,X2)) -> active#(U41(mark(X1),X2)) p33: active#(U21(tt(),V2)) -> mark#(U22(isList(V2))) p34: mark#(U31(X)) -> mark#(X) p35: mark#(U31(X)) -> active#(U31(mark(X))) p36: active#(__(nil(),X)) -> mark#(X) p37: mark#(isList(X)) -> active#(isList(X)) p38: active#(__(X,nil())) -> mark#(X) p39: mark#(U22(X)) -> mark#(X) p40: mark#(U22(X)) -> active#(U22(mark(X))) p41: mark#(U21(X1,X2)) -> mark#(X1) p42: mark#(U21(X1,X2)) -> active#(U21(mark(X1),X2)) p43: mark#(U11(X)) -> mark#(X) p44: mark#(U11(X)) -> active#(U11(mark(X))) p45: mark#(__(X1,X2)) -> mark#(X2) p46: mark#(__(X1,X2)) -> mark#(X1) p47: mark#(__(X1,X2)) -> active#(__(mark(X1),mark(X2))) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76, r77, r78, r79, r80, r81, r82, r83, r84, r85, r86, r87, r88, r89, r90, r91, r92, r93, r94, r95, r96, r97, r98, r99, r100, r101 Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: active#_A(x1) = x1 ___A(x1,x2) = 2 mark#_A(x1) = 2 isNePal_A(x1) = 2 isPal_A(x1) = 2 U81_A(x1) = 2 isQid_A(x1) = 1 U71_A(x1,x2) = 2 mark_A(x1) = 1 U61_A(x1) = 1 isNeList_A(x1) = 2 U51_A(x1,x2) = 2 U72_A(x1) = 1 U41_A(x1,x2) = 2 isList_A(x1) = 2 U31_A(x1) = 1 U21_A(x1,x2) = 2 U52_A(x1) = 2 U11_A(x1) = 2 tt_A() = 1 U42_A(x1) = 1 U22_A(x1) = 1 nil_A() = 1 active_A(x1) = 1 a_A() = 1 e_A() = 1 i_A() = 1 o_A() = 1 u_A() = 1 The next rules are strictly ordered: p4, p12, p18, p29, p35, p40 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(__(__(X,Y),Z)) -> mark#(__(X,__(Y,Z))) p2: mark#(isNePal(X)) -> active#(isNePal(X)) p3: active#(isPal(V)) -> mark#(U81(isNePal(V))) p4: active#(isNePal(__(I,__(P,I)))) -> mark#(U71(isQid(I),P)) p5: mark#(U81(X)) -> mark#(X) p6: mark#(U81(X)) -> active#(U81(mark(X))) p7: active#(isNePal(V)) -> mark#(U61(isQid(V))) p8: mark#(isPal(X)) -> active#(isPal(X)) p9: active#(isNeList(__(V1,V2))) -> mark#(U51(isNeList(V1),V2)) p10: mark#(U72(X)) -> mark#(X) p11: active#(isNeList(__(V1,V2))) -> mark#(U41(isList(V1),V2)) p12: mark#(U71(X1,X2)) -> mark#(X1) p13: mark#(U71(X1,X2)) -> active#(U71(mark(X1),X2)) p14: active#(isNeList(V)) -> mark#(U31(isQid(V))) p15: mark#(U61(X)) -> mark#(X) p16: active#(isList(__(V1,V2))) -> mark#(U21(isList(V1),V2)) p17: mark#(U52(X)) -> mark#(X) p18: mark#(U52(X)) -> active#(U52(mark(X))) p19: active#(isList(V)) -> mark#(U11(isNeList(V))) p20: mark#(U51(X1,X2)) -> mark#(X1) p21: mark#(U51(X1,X2)) -> active#(U51(mark(X1),X2)) p22: active#(U71(tt(),P)) -> mark#(U72(isPal(P))) p23: mark#(isNeList(X)) -> active#(isNeList(X)) p24: active#(U51(tt(),V2)) -> mark#(U52(isList(V2))) p25: mark#(U42(X)) -> mark#(X) p26: active#(U41(tt(),V2)) -> mark#(U42(isNeList(V2))) p27: mark#(U41(X1,X2)) -> mark#(X1) p28: mark#(U41(X1,X2)) -> active#(U41(mark(X1),X2)) p29: active#(U21(tt(),V2)) -> mark#(U22(isList(V2))) p30: mark#(U31(X)) -> mark#(X) p31: active#(__(nil(),X)) -> mark#(X) p32: mark#(isList(X)) -> active#(isList(X)) p33: active#(__(X,nil())) -> mark#(X) p34: mark#(U22(X)) -> mark#(X) p35: mark#(U21(X1,X2)) -> mark#(X1) p36: mark#(U21(X1,X2)) -> active#(U21(mark(X1),X2)) p37: mark#(U11(X)) -> mark#(X) p38: mark#(U11(X)) -> active#(U11(mark(X))) p39: mark#(__(X1,X2)) -> mark#(X2) p40: mark#(__(X1,X2)) -> mark#(X1) p41: mark#(__(X1,X2)) -> active#(__(mark(X1),mark(X2))) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23, p24, p25, p26, p27, p28, p29, p30, p31, p32, p33, p34, p35, p36, p37, p38, p39, p40, p41} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(__(__(X,Y),Z)) -> mark#(__(X,__(Y,Z))) p2: mark#(__(X1,X2)) -> active#(__(mark(X1),mark(X2))) p3: active#(__(X,nil())) -> mark#(X) p4: mark#(__(X1,X2)) -> mark#(X1) p5: mark#(__(X1,X2)) -> mark#(X2) p6: mark#(U11(X)) -> active#(U11(mark(X))) p7: active#(__(nil(),X)) -> mark#(X) p8: mark#(U11(X)) -> mark#(X) p9: mark#(U21(X1,X2)) -> active#(U21(mark(X1),X2)) p10: active#(U21(tt(),V2)) -> mark#(U22(isList(V2))) p11: mark#(U21(X1,X2)) -> mark#(X1) p12: mark#(U22(X)) -> mark#(X) p13: mark#(isList(X)) -> active#(isList(X)) p14: active#(U41(tt(),V2)) -> mark#(U42(isNeList(V2))) p15: mark#(U31(X)) -> mark#(X) p16: mark#(U41(X1,X2)) -> active#(U41(mark(X1),X2)) p17: active#(U51(tt(),V2)) -> mark#(U52(isList(V2))) p18: mark#(U41(X1,X2)) -> mark#(X1) p19: mark#(U42(X)) -> mark#(X) p20: mark#(isNeList(X)) -> active#(isNeList(X)) p21: active#(U71(tt(),P)) -> mark#(U72(isPal(P))) p22: mark#(U51(X1,X2)) -> active#(U51(mark(X1),X2)) p23: active#(isList(V)) -> mark#(U11(isNeList(V))) p24: mark#(U51(X1,X2)) -> mark#(X1) p25: mark#(U52(X)) -> active#(U52(mark(X))) p26: active#(isList(__(V1,V2))) -> mark#(U21(isList(V1),V2)) p27: mark#(U52(X)) -> mark#(X) p28: mark#(U61(X)) -> mark#(X) p29: mark#(U71(X1,X2)) -> active#(U71(mark(X1),X2)) p30: active#(isNeList(V)) -> mark#(U31(isQid(V))) p31: mark#(U71(X1,X2)) -> mark#(X1) p32: mark#(U72(X)) -> mark#(X) p33: mark#(isPal(X)) -> active#(isPal(X)) p34: active#(isNeList(__(V1,V2))) -> mark#(U41(isList(V1),V2)) p35: mark#(U81(X)) -> active#(U81(mark(X))) p36: active#(isNeList(__(V1,V2))) -> mark#(U51(isNeList(V1),V2)) p37: mark#(U81(X)) -> mark#(X) p38: mark#(isNePal(X)) -> active#(isNePal(X)) p39: active#(isNePal(V)) -> mark#(U61(isQid(V))) p40: active#(isNePal(__(I,__(P,I)))) -> mark#(U71(isQid(I),P)) p41: active#(isPal(V)) -> mark#(U81(isNePal(V))) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76, r77, r78, r79, r80, r81, r82, r83, r84, r85, r86, r87, r88, r89, r90, r91, r92, r93, r94, r95, r96, r97, r98, r99, r100, r101 Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: active#_A(x1) = x1 ___A(x1,x2) = x1 + x2 + 3 mark#_A(x1) = x1 mark_A(x1) = x1 nil_A() = 1 U11_A(x1) = x1 U21_A(x1,x2) = x1 tt_A() = 1 U22_A(x1) = x1 isList_A(x1) = 1 U41_A(x1,x2) = x1 U42_A(x1) = x1 isNeList_A(x1) = 1 U31_A(x1) = x1 U51_A(x1,x2) = x1 U52_A(x1) = x1 U71_A(x1,x2) = x1 + x2 + 4 U72_A(x1) = x1 isPal_A(x1) = x1 + 3 U61_A(x1) = x1 isQid_A(x1) = 1 U81_A(x1) = x1 + 2 isNePal_A(x1) = x1 + 1 active_A(x1) = x1 a_A() = 0 e_A() = 0 i_A() = 0 o_A() = 0 u_A() = 0 The next rules are strictly ordered: p3, p4, p5, p7, p21, p31, p37, p40 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(__(__(X,Y),Z)) -> mark#(__(X,__(Y,Z))) p2: mark#(__(X1,X2)) -> active#(__(mark(X1),mark(X2))) p3: mark#(U11(X)) -> active#(U11(mark(X))) p4: mark#(U11(X)) -> mark#(X) p5: mark#(U21(X1,X2)) -> active#(U21(mark(X1),X2)) p6: active#(U21(tt(),V2)) -> mark#(U22(isList(V2))) p7: mark#(U21(X1,X2)) -> mark#(X1) p8: mark#(U22(X)) -> mark#(X) p9: mark#(isList(X)) -> active#(isList(X)) p10: active#(U41(tt(),V2)) -> mark#(U42(isNeList(V2))) p11: mark#(U31(X)) -> mark#(X) p12: mark#(U41(X1,X2)) -> active#(U41(mark(X1),X2)) p13: active#(U51(tt(),V2)) -> mark#(U52(isList(V2))) p14: mark#(U41(X1,X2)) -> mark#(X1) p15: mark#(U42(X)) -> mark#(X) p16: mark#(isNeList(X)) -> active#(isNeList(X)) p17: mark#(U51(X1,X2)) -> active#(U51(mark(X1),X2)) p18: active#(isList(V)) -> mark#(U11(isNeList(V))) p19: mark#(U51(X1,X2)) -> mark#(X1) p20: mark#(U52(X)) -> active#(U52(mark(X))) p21: active#(isList(__(V1,V2))) -> mark#(U21(isList(V1),V2)) p22: mark#(U52(X)) -> mark#(X) p23: mark#(U61(X)) -> mark#(X) p24: mark#(U71(X1,X2)) -> active#(U71(mark(X1),X2)) p25: active#(isNeList(V)) -> mark#(U31(isQid(V))) p26: mark#(U72(X)) -> mark#(X) p27: mark#(isPal(X)) -> active#(isPal(X)) p28: active#(isNeList(__(V1,V2))) -> mark#(U41(isList(V1),V2)) p29: mark#(U81(X)) -> active#(U81(mark(X))) p30: active#(isNeList(__(V1,V2))) -> mark#(U51(isNeList(V1),V2)) p31: mark#(isNePal(X)) -> active#(isNePal(X)) p32: active#(isNePal(V)) -> mark#(U61(isQid(V))) p33: active#(isPal(V)) -> mark#(U81(isNePal(V))) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23, p24, p25, p26, p27, p28, p29, p30, p31, p32, p33} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(__(__(X,Y),Z)) -> mark#(__(X,__(Y,Z))) p2: mark#(isNePal(X)) -> active#(isNePal(X)) p3: active#(isPal(V)) -> mark#(U81(isNePal(V))) p4: mark#(U81(X)) -> active#(U81(mark(X))) p5: active#(isNePal(V)) -> mark#(U61(isQid(V))) p6: mark#(isPal(X)) -> active#(isPal(X)) p7: active#(isNeList(__(V1,V2))) -> mark#(U51(isNeList(V1),V2)) p8: mark#(U72(X)) -> mark#(X) p9: mark#(U71(X1,X2)) -> active#(U71(mark(X1),X2)) p10: active#(isNeList(__(V1,V2))) -> mark#(U41(isList(V1),V2)) p11: mark#(U61(X)) -> mark#(X) p12: mark#(U52(X)) -> mark#(X) p13: mark#(U52(X)) -> active#(U52(mark(X))) p14: active#(isNeList(V)) -> mark#(U31(isQid(V))) p15: mark#(U51(X1,X2)) -> mark#(X1) p16: mark#(U51(X1,X2)) -> active#(U51(mark(X1),X2)) p17: active#(isList(__(V1,V2))) -> mark#(U21(isList(V1),V2)) p18: mark#(isNeList(X)) -> active#(isNeList(X)) p19: active#(isList(V)) -> mark#(U11(isNeList(V))) p20: mark#(U42(X)) -> mark#(X) p21: mark#(U41(X1,X2)) -> mark#(X1) p22: mark#(U41(X1,X2)) -> active#(U41(mark(X1),X2)) p23: active#(U51(tt(),V2)) -> mark#(U52(isList(V2))) p24: mark#(U31(X)) -> mark#(X) p25: mark#(isList(X)) -> active#(isList(X)) p26: active#(U41(tt(),V2)) -> mark#(U42(isNeList(V2))) p27: mark#(U22(X)) -> mark#(X) p28: mark#(U21(X1,X2)) -> mark#(X1) p29: mark#(U21(X1,X2)) -> active#(U21(mark(X1),X2)) p30: active#(U21(tt(),V2)) -> mark#(U22(isList(V2))) p31: mark#(U11(X)) -> mark#(X) p32: mark#(U11(X)) -> active#(U11(mark(X))) p33: mark#(__(X1,X2)) -> active#(__(mark(X1),mark(X2))) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76, r77, r78, r79, r80, r81, r82, r83, r84, r85, r86, r87, r88, r89, r90, r91, r92, r93, r94, r95, r96, r97, r98, r99, r100, r101 Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: active#_A(x1) = x1 ___A(x1,x2) = 2 mark#_A(x1) = 2 isNePal_A(x1) = 2 isPal_A(x1) = 2 U81_A(x1) = 2 mark_A(x1) = 1 U61_A(x1) = 1 isQid_A(x1) = 1 isNeList_A(x1) = 2 U51_A(x1,x2) = 2 U72_A(x1) = 1 U71_A(x1,x2) = 2 U41_A(x1,x2) = 2 isList_A(x1) = 2 U52_A(x1) = 1 U31_A(x1) = 1 U21_A(x1,x2) = 2 U11_A(x1) = 1 U42_A(x1) = 1 tt_A() = 1 U22_A(x1) = 1 active_A(x1) = 1 nil_A() = 1 a_A() = 1 e_A() = 1 i_A() = 1 o_A() = 1 u_A() = 1 The next rules are strictly ordered: p13, p32 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(__(__(X,Y),Z)) -> mark#(__(X,__(Y,Z))) p2: mark#(isNePal(X)) -> active#(isNePal(X)) p3: active#(isPal(V)) -> mark#(U81(isNePal(V))) p4: mark#(U81(X)) -> active#(U81(mark(X))) p5: active#(isNePal(V)) -> mark#(U61(isQid(V))) p6: mark#(isPal(X)) -> active#(isPal(X)) p7: active#(isNeList(__(V1,V2))) -> mark#(U51(isNeList(V1),V2)) p8: mark#(U72(X)) -> mark#(X) p9: mark#(U71(X1,X2)) -> active#(U71(mark(X1),X2)) p10: active#(isNeList(__(V1,V2))) -> mark#(U41(isList(V1),V2)) p11: mark#(U61(X)) -> mark#(X) p12: mark#(U52(X)) -> mark#(X) p13: active#(isNeList(V)) -> mark#(U31(isQid(V))) p14: mark#(U51(X1,X2)) -> mark#(X1) p15: mark#(U51(X1,X2)) -> active#(U51(mark(X1),X2)) p16: active#(isList(__(V1,V2))) -> mark#(U21(isList(V1),V2)) p17: mark#(isNeList(X)) -> active#(isNeList(X)) p18: active#(isList(V)) -> mark#(U11(isNeList(V))) p19: mark#(U42(X)) -> mark#(X) p20: mark#(U41(X1,X2)) -> mark#(X1) p21: mark#(U41(X1,X2)) -> active#(U41(mark(X1),X2)) p22: active#(U51(tt(),V2)) -> mark#(U52(isList(V2))) p23: mark#(U31(X)) -> mark#(X) p24: mark#(isList(X)) -> active#(isList(X)) p25: active#(U41(tt(),V2)) -> mark#(U42(isNeList(V2))) p26: mark#(U22(X)) -> mark#(X) p27: mark#(U21(X1,X2)) -> mark#(X1) p28: mark#(U21(X1,X2)) -> active#(U21(mark(X1),X2)) p29: active#(U21(tt(),V2)) -> mark#(U22(isList(V2))) p30: mark#(U11(X)) -> mark#(X) p31: mark#(__(X1,X2)) -> active#(__(mark(X1),mark(X2))) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23, p24, p25, p26, p27, p28, p29, p30, p31} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(__(__(X,Y),Z)) -> mark#(__(X,__(Y,Z))) p2: mark#(__(X1,X2)) -> active#(__(mark(X1),mark(X2))) p3: active#(U21(tt(),V2)) -> mark#(U22(isList(V2))) p4: mark#(U11(X)) -> mark#(X) p5: mark#(U21(X1,X2)) -> active#(U21(mark(X1),X2)) p6: active#(U41(tt(),V2)) -> mark#(U42(isNeList(V2))) p7: mark#(U21(X1,X2)) -> mark#(X1) p8: mark#(U22(X)) -> mark#(X) p9: mark#(isList(X)) -> active#(isList(X)) p10: active#(U51(tt(),V2)) -> mark#(U52(isList(V2))) p11: mark#(U31(X)) -> mark#(X) p12: mark#(U41(X1,X2)) -> active#(U41(mark(X1),X2)) p13: active#(isList(V)) -> mark#(U11(isNeList(V))) p14: mark#(U41(X1,X2)) -> mark#(X1) p15: mark#(U42(X)) -> mark#(X) p16: mark#(isNeList(X)) -> active#(isNeList(X)) p17: active#(isList(__(V1,V2))) -> mark#(U21(isList(V1),V2)) p18: mark#(U51(X1,X2)) -> active#(U51(mark(X1),X2)) p19: active#(isNeList(V)) -> mark#(U31(isQid(V))) p20: mark#(U51(X1,X2)) -> mark#(X1) p21: mark#(U52(X)) -> mark#(X) p22: mark#(U61(X)) -> mark#(X) p23: mark#(U71(X1,X2)) -> active#(U71(mark(X1),X2)) p24: active#(isNeList(__(V1,V2))) -> mark#(U41(isList(V1),V2)) p25: mark#(U72(X)) -> mark#(X) p26: mark#(isPal(X)) -> active#(isPal(X)) p27: active#(isNeList(__(V1,V2))) -> mark#(U51(isNeList(V1),V2)) p28: mark#(U81(X)) -> active#(U81(mark(X))) p29: active#(isNePal(V)) -> mark#(U61(isQid(V))) p30: mark#(isNePal(X)) -> active#(isNePal(X)) p31: active#(isPal(V)) -> mark#(U81(isNePal(V))) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76, r77, r78, r79, r80, r81, r82, r83, r84, r85, r86, r87, r88, r89, r90, r91, r92, r93, r94, r95, r96, r97, r98, r99, r100, r101 Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: active#_A(x1) = x1 ___A(x1,x2) = x1 + x2 + 1 mark#_A(x1) = x1 mark_A(x1) = x1 U21_A(x1,x2) = x1 tt_A() = 1 U22_A(x1) = x1 isList_A(x1) = 1 U11_A(x1) = x1 U41_A(x1,x2) = x1 U42_A(x1) = x1 isNeList_A(x1) = 1 U51_A(x1,x2) = x1 U52_A(x1) = x1 U31_A(x1) = x1 isQid_A(x1) = 1 U61_A(x1) = x1 + 1 U71_A(x1,x2) = 3 U72_A(x1) = x1 + 1 isPal_A(x1) = 2 U81_A(x1) = 1 isNePal_A(x1) = x1 + 2 active_A(x1) = x1 nil_A() = 1 a_A() = 0 e_A() = 0 i_A() = 1 o_A() = 1 u_A() = 1 The next rules are strictly ordered: p22, p25, p31 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(__(__(X,Y),Z)) -> mark#(__(X,__(Y,Z))) p2: mark#(__(X1,X2)) -> active#(__(mark(X1),mark(X2))) p3: active#(U21(tt(),V2)) -> mark#(U22(isList(V2))) p4: mark#(U11(X)) -> mark#(X) p5: mark#(U21(X1,X2)) -> active#(U21(mark(X1),X2)) p6: active#(U41(tt(),V2)) -> mark#(U42(isNeList(V2))) p7: mark#(U21(X1,X2)) -> mark#(X1) p8: mark#(U22(X)) -> mark#(X) p9: mark#(isList(X)) -> active#(isList(X)) p10: active#(U51(tt(),V2)) -> mark#(U52(isList(V2))) p11: mark#(U31(X)) -> mark#(X) p12: mark#(U41(X1,X2)) -> active#(U41(mark(X1),X2)) p13: active#(isList(V)) -> mark#(U11(isNeList(V))) p14: mark#(U41(X1,X2)) -> mark#(X1) p15: mark#(U42(X)) -> mark#(X) p16: mark#(isNeList(X)) -> active#(isNeList(X)) p17: active#(isList(__(V1,V2))) -> mark#(U21(isList(V1),V2)) p18: mark#(U51(X1,X2)) -> active#(U51(mark(X1),X2)) p19: active#(isNeList(V)) -> mark#(U31(isQid(V))) p20: mark#(U51(X1,X2)) -> mark#(X1) p21: mark#(U52(X)) -> mark#(X) p22: mark#(U71(X1,X2)) -> active#(U71(mark(X1),X2)) p23: active#(isNeList(__(V1,V2))) -> mark#(U41(isList(V1),V2)) p24: mark#(isPal(X)) -> active#(isPal(X)) p25: active#(isNeList(__(V1,V2))) -> mark#(U51(isNeList(V1),V2)) p26: mark#(U81(X)) -> active#(U81(mark(X))) p27: active#(isNePal(V)) -> mark#(U61(isQid(V))) p28: mark#(isNePal(X)) -> active#(isNePal(X)) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23, p24, p25, p26, p27, p28} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(__(__(X,Y),Z)) -> mark#(__(X,__(Y,Z))) p2: mark#(isNePal(X)) -> active#(isNePal(X)) p3: active#(isNePal(V)) -> mark#(U61(isQid(V))) p4: mark#(U81(X)) -> active#(U81(mark(X))) p5: active#(isNeList(__(V1,V2))) -> mark#(U51(isNeList(V1),V2)) p6: mark#(isPal(X)) -> active#(isPal(X)) p7: active#(isNeList(__(V1,V2))) -> mark#(U41(isList(V1),V2)) p8: mark#(U71(X1,X2)) -> active#(U71(mark(X1),X2)) p9: active#(isNeList(V)) -> mark#(U31(isQid(V))) p10: mark#(U52(X)) -> mark#(X) p11: mark#(U51(X1,X2)) -> mark#(X1) p12: mark#(U51(X1,X2)) -> active#(U51(mark(X1),X2)) p13: active#(isList(__(V1,V2))) -> mark#(U21(isList(V1),V2)) p14: mark#(isNeList(X)) -> active#(isNeList(X)) p15: active#(isList(V)) -> mark#(U11(isNeList(V))) p16: mark#(U42(X)) -> mark#(X) p17: mark#(U41(X1,X2)) -> mark#(X1) p18: mark#(U41(X1,X2)) -> active#(U41(mark(X1),X2)) p19: active#(U51(tt(),V2)) -> mark#(U52(isList(V2))) p20: mark#(U31(X)) -> mark#(X) p21: mark#(isList(X)) -> active#(isList(X)) p22: active#(U41(tt(),V2)) -> mark#(U42(isNeList(V2))) p23: mark#(U22(X)) -> mark#(X) p24: mark#(U21(X1,X2)) -> mark#(X1) p25: mark#(U21(X1,X2)) -> active#(U21(mark(X1),X2)) p26: active#(U21(tt(),V2)) -> mark#(U22(isList(V2))) p27: mark#(U11(X)) -> mark#(X) p28: mark#(__(X1,X2)) -> active#(__(mark(X1),mark(X2))) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76, r77, r78, r79, r80, r81, r82, r83, r84, r85, r86, r87, r88, r89, r90, r91, r92, r93, r94, r95, r96, r97, r98, r99, r100, r101 Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: active#_A(x1) = x1 ___A(x1,x2) = 2 mark#_A(x1) = 2 isNePal_A(x1) = 2 U61_A(x1) = 1 isQid_A(x1) = 1 U81_A(x1) = 2 mark_A(x1) = 0 isNeList_A(x1) = 2 U51_A(x1,x2) = 2 isPal_A(x1) = 2 U41_A(x1,x2) = 2 isList_A(x1) = 2 U71_A(x1,x2) = 1 U31_A(x1) = 1 U52_A(x1) = 1 U21_A(x1,x2) = 2 U11_A(x1) = 1 U42_A(x1) = 1 tt_A() = 0 U22_A(x1) = 0 active_A(x1) = 0 nil_A() = 0 U72_A(x1) = 1 a_A() = 0 e_A() = 0 i_A() = 1 o_A() = 0 u_A() = 0 The next rules are strictly ordered: p8 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(__(__(X,Y),Z)) -> mark#(__(X,__(Y,Z))) p2: mark#(isNePal(X)) -> active#(isNePal(X)) p3: active#(isNePal(V)) -> mark#(U61(isQid(V))) p4: mark#(U81(X)) -> active#(U81(mark(X))) p5: active#(isNeList(__(V1,V2))) -> mark#(U51(isNeList(V1),V2)) p6: mark#(isPal(X)) -> active#(isPal(X)) p7: active#(isNeList(__(V1,V2))) -> mark#(U41(isList(V1),V2)) p8: active#(isNeList(V)) -> mark#(U31(isQid(V))) p9: mark#(U52(X)) -> mark#(X) p10: mark#(U51(X1,X2)) -> mark#(X1) p11: mark#(U51(X1,X2)) -> active#(U51(mark(X1),X2)) p12: active#(isList(__(V1,V2))) -> mark#(U21(isList(V1),V2)) p13: mark#(isNeList(X)) -> active#(isNeList(X)) p14: active#(isList(V)) -> mark#(U11(isNeList(V))) p15: mark#(U42(X)) -> mark#(X) p16: mark#(U41(X1,X2)) -> mark#(X1) p17: mark#(U41(X1,X2)) -> active#(U41(mark(X1),X2)) p18: active#(U51(tt(),V2)) -> mark#(U52(isList(V2))) p19: mark#(U31(X)) -> mark#(X) p20: mark#(isList(X)) -> active#(isList(X)) p21: active#(U41(tt(),V2)) -> mark#(U42(isNeList(V2))) p22: mark#(U22(X)) -> mark#(X) p23: mark#(U21(X1,X2)) -> mark#(X1) p24: mark#(U21(X1,X2)) -> active#(U21(mark(X1),X2)) p25: active#(U21(tt(),V2)) -> mark#(U22(isList(V2))) p26: mark#(U11(X)) -> mark#(X) p27: mark#(__(X1,X2)) -> active#(__(mark(X1),mark(X2))) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23, p24, p25, p26, p27} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(__(__(X,Y),Z)) -> mark#(__(X,__(Y,Z))) p2: mark#(__(X1,X2)) -> active#(__(mark(X1),mark(X2))) p3: active#(U21(tt(),V2)) -> mark#(U22(isList(V2))) p4: mark#(U11(X)) -> mark#(X) p5: mark#(U21(X1,X2)) -> active#(U21(mark(X1),X2)) p6: active#(U41(tt(),V2)) -> mark#(U42(isNeList(V2))) p7: mark#(U21(X1,X2)) -> mark#(X1) p8: mark#(U22(X)) -> mark#(X) p9: mark#(isList(X)) -> active#(isList(X)) p10: active#(U51(tt(),V2)) -> mark#(U52(isList(V2))) p11: mark#(U31(X)) -> mark#(X) p12: mark#(U41(X1,X2)) -> active#(U41(mark(X1),X2)) p13: active#(isList(V)) -> mark#(U11(isNeList(V))) p14: mark#(U41(X1,X2)) -> mark#(X1) p15: mark#(U42(X)) -> mark#(X) p16: mark#(isNeList(X)) -> active#(isNeList(X)) p17: active#(isList(__(V1,V2))) -> mark#(U21(isList(V1),V2)) p18: mark#(U51(X1,X2)) -> active#(U51(mark(X1),X2)) p19: active#(isNeList(V)) -> mark#(U31(isQid(V))) p20: mark#(U51(X1,X2)) -> mark#(X1) p21: mark#(U52(X)) -> mark#(X) p22: mark#(isPal(X)) -> active#(isPal(X)) p23: active#(isNeList(__(V1,V2))) -> mark#(U41(isList(V1),V2)) p24: mark#(U81(X)) -> active#(U81(mark(X))) p25: active#(isNeList(__(V1,V2))) -> mark#(U51(isNeList(V1),V2)) p26: mark#(isNePal(X)) -> active#(isNePal(X)) p27: active#(isNePal(V)) -> mark#(U61(isQid(V))) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76, r77, r78, r79, r80, r81, r82, r83, r84, r85, r86, r87, r88, r89, r90, r91, r92, r93, r94, r95, r96, r97, r98, r99, r100, r101 Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: active#_A(x1) = x1 ___A(x1,x2) = x1 + x2 + 1 mark#_A(x1) = x1 mark_A(x1) = x1 U21_A(x1,x2) = x1 tt_A() = 1 U22_A(x1) = x1 isList_A(x1) = 1 U11_A(x1) = x1 U41_A(x1,x2) = x1 U42_A(x1) = x1 isNeList_A(x1) = 1 U51_A(x1,x2) = x1 U52_A(x1) = x1 U31_A(x1) = x1 isQid_A(x1) = 1 isPal_A(x1) = x1 + 1 U81_A(x1) = 1 isNePal_A(x1) = x1 + 2 U61_A(x1) = 1 active_A(x1) = x1 nil_A() = 1 U71_A(x1,x2) = x1 + x2 + 1 U72_A(x1) = x1 + 1 a_A() = 1 e_A() = 1 i_A() = 1 o_A() = 1 u_A() = 1 The next rules are strictly ordered: p27 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(__(__(X,Y),Z)) -> mark#(__(X,__(Y,Z))) p2: mark#(__(X1,X2)) -> active#(__(mark(X1),mark(X2))) p3: active#(U21(tt(),V2)) -> mark#(U22(isList(V2))) p4: mark#(U11(X)) -> mark#(X) p5: mark#(U21(X1,X2)) -> active#(U21(mark(X1),X2)) p6: active#(U41(tt(),V2)) -> mark#(U42(isNeList(V2))) p7: mark#(U21(X1,X2)) -> mark#(X1) p8: mark#(U22(X)) -> mark#(X) p9: mark#(isList(X)) -> active#(isList(X)) p10: active#(U51(tt(),V2)) -> mark#(U52(isList(V2))) p11: mark#(U31(X)) -> mark#(X) p12: mark#(U41(X1,X2)) -> active#(U41(mark(X1),X2)) p13: active#(isList(V)) -> mark#(U11(isNeList(V))) p14: mark#(U41(X1,X2)) -> mark#(X1) p15: mark#(U42(X)) -> mark#(X) p16: mark#(isNeList(X)) -> active#(isNeList(X)) p17: active#(isList(__(V1,V2))) -> mark#(U21(isList(V1),V2)) p18: mark#(U51(X1,X2)) -> active#(U51(mark(X1),X2)) p19: active#(isNeList(V)) -> mark#(U31(isQid(V))) p20: mark#(U51(X1,X2)) -> mark#(X1) p21: mark#(U52(X)) -> mark#(X) p22: mark#(isPal(X)) -> active#(isPal(X)) p23: active#(isNeList(__(V1,V2))) -> mark#(U41(isList(V1),V2)) p24: mark#(U81(X)) -> active#(U81(mark(X))) p25: active#(isNeList(__(V1,V2))) -> mark#(U51(isNeList(V1),V2)) p26: mark#(isNePal(X)) -> active#(isNePal(X)) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23, p24, p25, p26} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(__(__(X,Y),Z)) -> mark#(__(X,__(Y,Z))) p2: mark#(isNePal(X)) -> active#(isNePal(X)) p3: active#(isNeList(__(V1,V2))) -> mark#(U51(isNeList(V1),V2)) p4: mark#(U81(X)) -> active#(U81(mark(X))) p5: active#(isNeList(__(V1,V2))) -> mark#(U41(isList(V1),V2)) p6: mark#(isPal(X)) -> active#(isPal(X)) p7: active#(isNeList(V)) -> mark#(U31(isQid(V))) p8: mark#(U52(X)) -> mark#(X) p9: mark#(U51(X1,X2)) -> mark#(X1) p10: mark#(U51(X1,X2)) -> active#(U51(mark(X1),X2)) p11: active#(isList(__(V1,V2))) -> mark#(U21(isList(V1),V2)) p12: mark#(isNeList(X)) -> active#(isNeList(X)) p13: active#(isList(V)) -> mark#(U11(isNeList(V))) p14: mark#(U42(X)) -> mark#(X) p15: mark#(U41(X1,X2)) -> mark#(X1) p16: mark#(U41(X1,X2)) -> active#(U41(mark(X1),X2)) p17: active#(U51(tt(),V2)) -> mark#(U52(isList(V2))) p18: mark#(U31(X)) -> mark#(X) p19: mark#(isList(X)) -> active#(isList(X)) p20: active#(U41(tt(),V2)) -> mark#(U42(isNeList(V2))) p21: mark#(U22(X)) -> mark#(X) p22: mark#(U21(X1,X2)) -> mark#(X1) p23: mark#(U21(X1,X2)) -> active#(U21(mark(X1),X2)) p24: active#(U21(tt(),V2)) -> mark#(U22(isList(V2))) p25: mark#(U11(X)) -> mark#(X) p26: mark#(__(X1,X2)) -> active#(__(mark(X1),mark(X2))) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76, r77, r78, r79, r80, r81, r82, r83, r84, r85, r86, r87, r88, r89, r90, r91, r92, r93, r94, r95, r96, r97, r98, r99, r100, r101 Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: active#_A(x1) = x1 ___A(x1,x2) = 2 mark#_A(x1) = 2 isNePal_A(x1) = 2 isNeList_A(x1) = 2 U51_A(x1,x2) = 2 U81_A(x1) = 2 mark_A(x1) = 1 U41_A(x1,x2) = 2 isList_A(x1) = 2 isPal_A(x1) = 1 U31_A(x1) = 1 isQid_A(x1) = 1 U52_A(x1) = 1 U21_A(x1,x2) = 2 U11_A(x1) = 1 U42_A(x1) = 1 tt_A() = 1 U22_A(x1) = 1 active_A(x1) = 1 nil_A() = 1 U61_A(x1) = 1 U71_A(x1,x2) = 1 U72_A(x1) = 1 a_A() = 1 e_A() = 1 i_A() = 1 o_A() = 1 u_A() = 1 The next rules are strictly ordered: p6 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(__(__(X,Y),Z)) -> mark#(__(X,__(Y,Z))) p2: mark#(isNePal(X)) -> active#(isNePal(X)) p3: active#(isNeList(__(V1,V2))) -> mark#(U51(isNeList(V1),V2)) p4: mark#(U81(X)) -> active#(U81(mark(X))) p5: active#(isNeList(__(V1,V2))) -> mark#(U41(isList(V1),V2)) p6: active#(isNeList(V)) -> mark#(U31(isQid(V))) p7: mark#(U52(X)) -> mark#(X) p8: mark#(U51(X1,X2)) -> mark#(X1) p9: mark#(U51(X1,X2)) -> active#(U51(mark(X1),X2)) p10: active#(isList(__(V1,V2))) -> mark#(U21(isList(V1),V2)) p11: mark#(isNeList(X)) -> active#(isNeList(X)) p12: active#(isList(V)) -> mark#(U11(isNeList(V))) p13: mark#(U42(X)) -> mark#(X) p14: mark#(U41(X1,X2)) -> mark#(X1) p15: mark#(U41(X1,X2)) -> active#(U41(mark(X1),X2)) p16: active#(U51(tt(),V2)) -> mark#(U52(isList(V2))) p17: mark#(U31(X)) -> mark#(X) p18: mark#(isList(X)) -> active#(isList(X)) p19: active#(U41(tt(),V2)) -> mark#(U42(isNeList(V2))) p20: mark#(U22(X)) -> mark#(X) p21: mark#(U21(X1,X2)) -> mark#(X1) p22: mark#(U21(X1,X2)) -> active#(U21(mark(X1),X2)) p23: active#(U21(tt(),V2)) -> mark#(U22(isList(V2))) p24: mark#(U11(X)) -> mark#(X) p25: mark#(__(X1,X2)) -> active#(__(mark(X1),mark(X2))) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23, p24, p25} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(__(__(X,Y),Z)) -> mark#(__(X,__(Y,Z))) p2: mark#(__(X1,X2)) -> active#(__(mark(X1),mark(X2))) p3: active#(U21(tt(),V2)) -> mark#(U22(isList(V2))) p4: mark#(U11(X)) -> mark#(X) p5: mark#(U21(X1,X2)) -> active#(U21(mark(X1),X2)) p6: active#(U41(tt(),V2)) -> mark#(U42(isNeList(V2))) p7: mark#(U21(X1,X2)) -> mark#(X1) p8: mark#(U22(X)) -> mark#(X) p9: mark#(isList(X)) -> active#(isList(X)) p10: active#(U51(tt(),V2)) -> mark#(U52(isList(V2))) p11: mark#(U31(X)) -> mark#(X) p12: mark#(U41(X1,X2)) -> active#(U41(mark(X1),X2)) p13: active#(isList(V)) -> mark#(U11(isNeList(V))) p14: mark#(U41(X1,X2)) -> mark#(X1) p15: mark#(U42(X)) -> mark#(X) p16: mark#(isNeList(X)) -> active#(isNeList(X)) p17: active#(isList(__(V1,V2))) -> mark#(U21(isList(V1),V2)) p18: mark#(U51(X1,X2)) -> active#(U51(mark(X1),X2)) p19: active#(isNeList(V)) -> mark#(U31(isQid(V))) p20: mark#(U51(X1,X2)) -> mark#(X1) p21: mark#(U52(X)) -> mark#(X) p22: mark#(U81(X)) -> active#(U81(mark(X))) p23: active#(isNeList(__(V1,V2))) -> mark#(U41(isList(V1),V2)) p24: mark#(isNePal(X)) -> active#(isNePal(X)) p25: active#(isNeList(__(V1,V2))) -> mark#(U51(isNeList(V1),V2)) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76, r77, r78, r79, r80, r81, r82, r83, r84, r85, r86, r87, r88, r89, r90, r91, r92, r93, r94, r95, r96, r97, r98, r99, r100, r101 Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: active#_A(x1) = x1 ___A(x1,x2) = 2 mark#_A(x1) = 2 mark_A(x1) = 1 U21_A(x1,x2) = 2 tt_A() = 1 U22_A(x1) = 1 isList_A(x1) = 2 U11_A(x1) = 1 U41_A(x1,x2) = 2 U42_A(x1) = 1 isNeList_A(x1) = 2 U51_A(x1,x2) = 2 U52_A(x1) = 1 U31_A(x1) = 1 isQid_A(x1) = 1 U81_A(x1) = 1 isNePal_A(x1) = 2 active_A(x1) = 1 nil_A() = 1 U61_A(x1) = 1 U71_A(x1,x2) = 1 U72_A(x1) = 1 isPal_A(x1) = 1 a_A() = 1 e_A() = 1 i_A() = 1 o_A() = 1 u_A() = 1 The next rules are strictly ordered: p22 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(__(__(X,Y),Z)) -> mark#(__(X,__(Y,Z))) p2: mark#(__(X1,X2)) -> active#(__(mark(X1),mark(X2))) p3: active#(U21(tt(),V2)) -> mark#(U22(isList(V2))) p4: mark#(U11(X)) -> mark#(X) p5: mark#(U21(X1,X2)) -> active#(U21(mark(X1),X2)) p6: active#(U41(tt(),V2)) -> mark#(U42(isNeList(V2))) p7: mark#(U21(X1,X2)) -> mark#(X1) p8: mark#(U22(X)) -> mark#(X) p9: mark#(isList(X)) -> active#(isList(X)) p10: active#(U51(tt(),V2)) -> mark#(U52(isList(V2))) p11: mark#(U31(X)) -> mark#(X) p12: mark#(U41(X1,X2)) -> active#(U41(mark(X1),X2)) p13: active#(isList(V)) -> mark#(U11(isNeList(V))) p14: mark#(U41(X1,X2)) -> mark#(X1) p15: mark#(U42(X)) -> mark#(X) p16: mark#(isNeList(X)) -> active#(isNeList(X)) p17: active#(isList(__(V1,V2))) -> mark#(U21(isList(V1),V2)) p18: mark#(U51(X1,X2)) -> active#(U51(mark(X1),X2)) p19: active#(isNeList(V)) -> mark#(U31(isQid(V))) p20: mark#(U51(X1,X2)) -> mark#(X1) p21: mark#(U52(X)) -> mark#(X) p22: active#(isNeList(__(V1,V2))) -> mark#(U41(isList(V1),V2)) p23: mark#(isNePal(X)) -> active#(isNePal(X)) p24: active#(isNeList(__(V1,V2))) -> mark#(U51(isNeList(V1),V2)) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23, p24} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(__(__(X,Y),Z)) -> mark#(__(X,__(Y,Z))) p2: mark#(isNePal(X)) -> active#(isNePal(X)) p3: active#(isNeList(__(V1,V2))) -> mark#(U51(isNeList(V1),V2)) p4: mark#(U52(X)) -> mark#(X) p5: mark#(U51(X1,X2)) -> mark#(X1) p6: mark#(U51(X1,X2)) -> active#(U51(mark(X1),X2)) p7: active#(isNeList(__(V1,V2))) -> mark#(U41(isList(V1),V2)) p8: mark#(isNeList(X)) -> active#(isNeList(X)) p9: active#(isNeList(V)) -> mark#(U31(isQid(V))) p10: mark#(U42(X)) -> mark#(X) p11: mark#(U41(X1,X2)) -> mark#(X1) p12: mark#(U41(X1,X2)) -> active#(U41(mark(X1),X2)) p13: active#(isList(__(V1,V2))) -> mark#(U21(isList(V1),V2)) p14: mark#(U31(X)) -> mark#(X) p15: mark#(isList(X)) -> active#(isList(X)) p16: active#(isList(V)) -> mark#(U11(isNeList(V))) p17: mark#(U22(X)) -> mark#(X) p18: mark#(U21(X1,X2)) -> mark#(X1) p19: mark#(U21(X1,X2)) -> active#(U21(mark(X1),X2)) p20: active#(U51(tt(),V2)) -> mark#(U52(isList(V2))) p21: mark#(U11(X)) -> mark#(X) p22: mark#(__(X1,X2)) -> active#(__(mark(X1),mark(X2))) p23: active#(U41(tt(),V2)) -> mark#(U42(isNeList(V2))) p24: active#(U21(tt(),V2)) -> mark#(U22(isList(V2))) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76, r77, r78, r79, r80, r81, r82, r83, r84, r85, r86, r87, r88, r89, r90, r91, r92, r93, r94, r95, r96, r97, r98, r99, r100, r101 Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: active#_A(x1) = x1 ___A(x1,x2) = 2 mark#_A(x1) = 2 isNePal_A(x1) = 1 isNeList_A(x1) = 2 U51_A(x1,x2) = 2 U52_A(x1) = 1 mark_A(x1) = 1 U41_A(x1,x2) = 2 isList_A(x1) = 2 U31_A(x1) = 1 isQid_A(x1) = 1 U42_A(x1) = 1 U21_A(x1,x2) = 2 U11_A(x1) = 1 U22_A(x1) = 1 tt_A() = 1 active_A(x1) = 1 nil_A() = 1 U61_A(x1) = 1 U71_A(x1,x2) = 1 U72_A(x1) = 1 isPal_A(x1) = 1 U81_A(x1) = 1 a_A() = 1 e_A() = 1 i_A() = 1 o_A() = 1 u_A() = 1 The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(__(__(X,Y),Z)) -> mark#(__(X,__(Y,Z))) p2: active#(isNeList(__(V1,V2))) -> mark#(U51(isNeList(V1),V2)) p3: mark#(U52(X)) -> mark#(X) p4: mark#(U51(X1,X2)) -> mark#(X1) p5: mark#(U51(X1,X2)) -> active#(U51(mark(X1),X2)) p6: active#(isNeList(__(V1,V2))) -> mark#(U41(isList(V1),V2)) p7: mark#(isNeList(X)) -> active#(isNeList(X)) p8: active#(isNeList(V)) -> mark#(U31(isQid(V))) p9: mark#(U42(X)) -> mark#(X) p10: mark#(U41(X1,X2)) -> mark#(X1) p11: mark#(U41(X1,X2)) -> active#(U41(mark(X1),X2)) p12: active#(isList(__(V1,V2))) -> mark#(U21(isList(V1),V2)) p13: mark#(U31(X)) -> mark#(X) p14: mark#(isList(X)) -> active#(isList(X)) p15: active#(isList(V)) -> mark#(U11(isNeList(V))) p16: mark#(U22(X)) -> mark#(X) p17: mark#(U21(X1,X2)) -> mark#(X1) p18: mark#(U21(X1,X2)) -> active#(U21(mark(X1),X2)) p19: active#(U51(tt(),V2)) -> mark#(U52(isList(V2))) p20: mark#(U11(X)) -> mark#(X) p21: mark#(__(X1,X2)) -> active#(__(mark(X1),mark(X2))) p22: active#(U41(tt(),V2)) -> mark#(U42(isNeList(V2))) p23: active#(U21(tt(),V2)) -> mark#(U22(isList(V2))) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(__(__(X,Y),Z)) -> mark#(__(X,__(Y,Z))) p2: mark#(__(X1,X2)) -> active#(__(mark(X1),mark(X2))) p3: active#(U21(tt(),V2)) -> mark#(U22(isList(V2))) p4: mark#(U11(X)) -> mark#(X) p5: mark#(U21(X1,X2)) -> active#(U21(mark(X1),X2)) p6: active#(U41(tt(),V2)) -> mark#(U42(isNeList(V2))) p7: mark#(U21(X1,X2)) -> mark#(X1) p8: mark#(U22(X)) -> mark#(X) p9: mark#(isList(X)) -> active#(isList(X)) p10: active#(U51(tt(),V2)) -> mark#(U52(isList(V2))) p11: mark#(U31(X)) -> mark#(X) p12: mark#(U41(X1,X2)) -> active#(U41(mark(X1),X2)) p13: active#(isList(V)) -> mark#(U11(isNeList(V))) p14: mark#(U41(X1,X2)) -> mark#(X1) p15: mark#(U42(X)) -> mark#(X) p16: mark#(isNeList(X)) -> active#(isNeList(X)) p17: active#(isList(__(V1,V2))) -> mark#(U21(isList(V1),V2)) p18: mark#(U51(X1,X2)) -> active#(U51(mark(X1),X2)) p19: active#(isNeList(V)) -> mark#(U31(isQid(V))) p20: mark#(U51(X1,X2)) -> mark#(X1) p21: mark#(U52(X)) -> mark#(X) p22: active#(isNeList(__(V1,V2))) -> mark#(U41(isList(V1),V2)) p23: active#(isNeList(__(V1,V2))) -> mark#(U51(isNeList(V1),V2)) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76, r77, r78, r79, r80, r81, r82, r83, r84, r85, r86, r87, r88, r89, r90, r91, r92, r93, r94, r95, r96, r97, r98, r99, r100, r101 Take the monotone reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: active#_A(x1) = x1 ___A(x1,x2) = x1 + x2 + 2 mark#_A(x1) = x1 mark_A(x1) = x1 U21_A(x1,x2) = x1 + x2 tt_A() = 2 U22_A(x1) = x1 isList_A(x1) = x1 + 2 U11_A(x1) = x1 U41_A(x1,x2) = x1 + x2 U42_A(x1) = x1 isNeList_A(x1) = x1 + 1 U51_A(x1,x2) = x1 + x2 + 2 U52_A(x1) = x1 U31_A(x1) = x1 isQid_A(x1) = x1 + 1 active_A(x1) = x1 nil_A() = 1 U61_A(x1) = x1 + 1 U71_A(x1,x2) = x1 + x2 + 2 U72_A(x1) = x1 + 1 isPal_A(x1) = x1 + 3 U81_A(x1) = x1 + 1 isNePal_A(x1) = x1 + 2 a_A() = 1 e_A() = 1 i_A() = 1 o_A() = 1 u_A() = 1 The next rules are strictly ordered: p6, p10, p13, p17, p20, p22 r2, r3, r8, r10, r12, r14, r15, r16, r17, r18, r20, r23, r25 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(__(__(X,Y),Z)) -> mark#(__(X,__(Y,Z))) p2: mark#(__(X1,X2)) -> active#(__(mark(X1),mark(X2))) p3: active#(U21(tt(),V2)) -> mark#(U22(isList(V2))) p4: mark#(U11(X)) -> mark#(X) p5: mark#(U21(X1,X2)) -> active#(U21(mark(X1),X2)) p6: mark#(U21(X1,X2)) -> mark#(X1) p7: mark#(U22(X)) -> mark#(X) p8: mark#(isList(X)) -> active#(isList(X)) p9: mark#(U31(X)) -> mark#(X) p10: mark#(U41(X1,X2)) -> active#(U41(mark(X1),X2)) p11: mark#(U41(X1,X2)) -> mark#(X1) p12: mark#(U42(X)) -> mark#(X) p13: mark#(isNeList(X)) -> active#(isNeList(X)) p14: mark#(U51(X1,X2)) -> active#(U51(mark(X1),X2)) p15: active#(isNeList(V)) -> mark#(U31(isQid(V))) p16: mark#(U52(X)) -> mark#(X) p17: active#(isNeList(__(V1,V2))) -> mark#(U51(isNeList(V1),V2)) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(U11(tt())) -> mark(tt()) r3: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r4: active(U22(tt())) -> mark(tt()) r5: active(U31(tt())) -> mark(tt()) r6: active(U42(tt())) -> mark(tt()) r7: active(U52(tt())) -> mark(tt()) r8: active(U71(tt(),P)) -> mark(U72(isPal(P))) r9: active(isNeList(V)) -> mark(U31(isQid(V))) r10: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r11: active(isNePal(V)) -> mark(U61(isQid(V))) r12: active(isPal(V)) -> mark(U81(isNePal(V))) r13: active(isQid(a())) -> mark(tt()) r14: active(isQid(e())) -> mark(tt()) r15: active(isQid(i())) -> mark(tt()) r16: active(isQid(o())) -> mark(tt()) r17: active(isQid(u())) -> mark(tt()) r18: U61(mark(X)) -> U61(X) r19: U61(active(X)) -> U61(X) r20: U71(mark(X1),X2) -> U71(X1,X2) r21: U71(X1,mark(X2)) -> U71(X1,X2) r22: U71(active(X1),X2) -> U71(X1,X2) r23: U71(X1,active(X2)) -> U71(X1,X2) r24: U72(mark(X)) -> U72(X) r25: U72(active(X)) -> U72(X) r26: isPal(mark(X)) -> isPal(X) r27: isPal(active(X)) -> isPal(X) r28: U81(mark(X)) -> U81(X) r29: U81(active(X)) -> U81(X) r30: isNePal(mark(X)) -> isNePal(X) r31: isNePal(active(X)) -> isNePal(X) r32: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r33: mark(nil()) -> active(nil()) r34: mark(U11(X)) -> active(U11(mark(X))) r35: mark(tt()) -> active(tt()) r36: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r37: mark(U22(X)) -> active(U22(mark(X))) r38: mark(isList(X)) -> active(isList(X)) r39: mark(U31(X)) -> active(U31(mark(X))) r40: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r41: mark(U42(X)) -> active(U42(mark(X))) r42: mark(isNeList(X)) -> active(isNeList(X)) r43: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r44: mark(U52(X)) -> active(U52(mark(X))) r45: mark(U61(X)) -> active(U61(mark(X))) r46: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r47: mark(U72(X)) -> active(U72(mark(X))) r48: mark(isPal(X)) -> active(isPal(X)) r49: mark(U81(X)) -> active(U81(mark(X))) r50: mark(isQid(X)) -> active(isQid(X)) r51: mark(isNePal(X)) -> active(isNePal(X)) r52: mark(a()) -> active(a()) r53: mark(e()) -> active(e()) r54: mark(i()) -> active(i()) r55: mark(o()) -> active(o()) r56: mark(u()) -> active(u()) r57: __(mark(X1),X2) -> __(X1,X2) r58: __(X1,mark(X2)) -> __(X1,X2) r59: __(active(X1),X2) -> __(X1,X2) r60: __(X1,active(X2)) -> __(X1,X2) r61: U11(mark(X)) -> U11(X) r62: U11(active(X)) -> U11(X) r63: U21(mark(X1),X2) -> U21(X1,X2) r64: U21(X1,mark(X2)) -> U21(X1,X2) r65: U21(active(X1),X2) -> U21(X1,X2) r66: U21(X1,active(X2)) -> U21(X1,X2) r67: U22(mark(X)) -> U22(X) r68: U22(active(X)) -> U22(X) r69: isList(mark(X)) -> isList(X) r70: isList(active(X)) -> isList(X) r71: U31(mark(X)) -> U31(X) r72: U31(active(X)) -> U31(X) r73: U41(mark(X1),X2) -> U41(X1,X2) r74: U41(X1,mark(X2)) -> U41(X1,X2) r75: U41(active(X1),X2) -> U41(X1,X2) r76: U41(X1,active(X2)) -> U41(X1,X2) r77: U42(mark(X)) -> U42(X) r78: U42(active(X)) -> U42(X) r79: isNeList(mark(X)) -> isNeList(X) r80: isNeList(active(X)) -> isNeList(X) r81: U51(mark(X1),X2) -> U51(X1,X2) r82: U51(X1,mark(X2)) -> U51(X1,X2) r83: U51(active(X1),X2) -> U51(X1,X2) r84: U51(X1,active(X2)) -> U51(X1,X2) r85: U52(mark(X)) -> U52(X) r86: U52(active(X)) -> U52(X) r87: isQid(mark(X)) -> isQid(X) r88: isQid(active(X)) -> isQid(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(__(__(X,Y),Z)) -> mark#(__(X,__(Y,Z))) p2: mark#(U52(X)) -> mark#(X) p3: mark#(U51(X1,X2)) -> active#(U51(mark(X1),X2)) p4: active#(isNeList(__(V1,V2))) -> mark#(U51(isNeList(V1),V2)) p5: mark#(isNeList(X)) -> active#(isNeList(X)) p6: active#(isNeList(V)) -> mark#(U31(isQid(V))) p7: mark#(U42(X)) -> mark#(X) p8: mark#(U41(X1,X2)) -> mark#(X1) p9: mark#(U41(X1,X2)) -> active#(U41(mark(X1),X2)) p10: active#(U21(tt(),V2)) -> mark#(U22(isList(V2))) p11: mark#(U31(X)) -> mark#(X) p12: mark#(isList(X)) -> active#(isList(X)) p13: mark#(U22(X)) -> mark#(X) p14: mark#(U21(X1,X2)) -> mark#(X1) p15: mark#(U21(X1,X2)) -> active#(U21(mark(X1),X2)) p16: mark#(U11(X)) -> mark#(X) p17: mark#(__(X1,X2)) -> active#(__(mark(X1),mark(X2))) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(U11(tt())) -> mark(tt()) r3: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r4: active(U22(tt())) -> mark(tt()) r5: active(U31(tt())) -> mark(tt()) r6: active(U42(tt())) -> mark(tt()) r7: active(U52(tt())) -> mark(tt()) r8: active(U71(tt(),P)) -> mark(U72(isPal(P))) r9: active(isNeList(V)) -> mark(U31(isQid(V))) r10: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r11: active(isNePal(V)) -> mark(U61(isQid(V))) r12: active(isPal(V)) -> mark(U81(isNePal(V))) r13: active(isQid(a())) -> mark(tt()) r14: active(isQid(e())) -> mark(tt()) r15: active(isQid(i())) -> mark(tt()) r16: active(isQid(o())) -> mark(tt()) r17: active(isQid(u())) -> mark(tt()) r18: U61(mark(X)) -> U61(X) r19: U61(active(X)) -> U61(X) r20: U71(mark(X1),X2) -> U71(X1,X2) r21: U71(X1,mark(X2)) -> U71(X1,X2) r22: U71(active(X1),X2) -> U71(X1,X2) r23: U71(X1,active(X2)) -> U71(X1,X2) r24: U72(mark(X)) -> U72(X) r25: U72(active(X)) -> U72(X) r26: isPal(mark(X)) -> isPal(X) r27: isPal(active(X)) -> isPal(X) r28: U81(mark(X)) -> U81(X) r29: U81(active(X)) -> U81(X) r30: isNePal(mark(X)) -> isNePal(X) r31: isNePal(active(X)) -> isNePal(X) r32: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r33: mark(nil()) -> active(nil()) r34: mark(U11(X)) -> active(U11(mark(X))) r35: mark(tt()) -> active(tt()) r36: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r37: mark(U22(X)) -> active(U22(mark(X))) r38: mark(isList(X)) -> active(isList(X)) r39: mark(U31(X)) -> active(U31(mark(X))) r40: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r41: mark(U42(X)) -> active(U42(mark(X))) r42: mark(isNeList(X)) -> active(isNeList(X)) r43: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r44: mark(U52(X)) -> active(U52(mark(X))) r45: mark(U61(X)) -> active(U61(mark(X))) r46: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r47: mark(U72(X)) -> active(U72(mark(X))) r48: mark(isPal(X)) -> active(isPal(X)) r49: mark(U81(X)) -> active(U81(mark(X))) r50: mark(isQid(X)) -> active(isQid(X)) r51: mark(isNePal(X)) -> active(isNePal(X)) r52: mark(a()) -> active(a()) r53: mark(e()) -> active(e()) r54: mark(i()) -> active(i()) r55: mark(o()) -> active(o()) r56: mark(u()) -> active(u()) r57: __(mark(X1),X2) -> __(X1,X2) r58: __(X1,mark(X2)) -> __(X1,X2) r59: __(active(X1),X2) -> __(X1,X2) r60: __(X1,active(X2)) -> __(X1,X2) r61: U11(mark(X)) -> U11(X) r62: U11(active(X)) -> U11(X) r63: U21(mark(X1),X2) -> U21(X1,X2) r64: U21(X1,mark(X2)) -> U21(X1,X2) r65: U21(active(X1),X2) -> U21(X1,X2) r66: U21(X1,active(X2)) -> U21(X1,X2) r67: U22(mark(X)) -> U22(X) r68: U22(active(X)) -> U22(X) r69: isList(mark(X)) -> isList(X) r70: isList(active(X)) -> isList(X) r71: U31(mark(X)) -> U31(X) r72: U31(active(X)) -> U31(X) r73: U41(mark(X1),X2) -> U41(X1,X2) r74: U41(X1,mark(X2)) -> U41(X1,X2) r75: U41(active(X1),X2) -> U41(X1,X2) r76: U41(X1,active(X2)) -> U41(X1,X2) r77: U42(mark(X)) -> U42(X) r78: U42(active(X)) -> U42(X) r79: isNeList(mark(X)) -> isNeList(X) r80: isNeList(active(X)) -> isNeList(X) r81: U51(mark(X1),X2) -> U51(X1,X2) r82: U51(X1,mark(X2)) -> U51(X1,X2) r83: U51(active(X1),X2) -> U51(X1,X2) r84: U51(X1,active(X2)) -> U51(X1,X2) r85: U52(mark(X)) -> U52(X) r86: U52(active(X)) -> U52(X) r87: isQid(mark(X)) -> isQid(X) r88: isQid(active(X)) -> isQid(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76, r77, r78, r79, r80, r81, r82, r83, r84, r85, r86, r87, r88 Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: active#_A(x1) = x1 ___A(x1,x2) = x1 + 4 mark#_A(x1) = x1 + 2 U52_A(x1) = x1 + 1 U51_A(x1,x2) = x1 + 1 mark_A(x1) = x1 + 1 isNeList_A(x1) = x1 + 4 U31_A(x1) = x1 + 1 isQid_A(x1) = x1 + 1 U42_A(x1) = x1 + 1 U41_A(x1,x2) = x1 + 1 U21_A(x1,x2) = x1 + x2 + 1 tt_A() = 3 U22_A(x1) = x1 + 1 isList_A(x1) = x1 + 1 U11_A(x1) = x1 + 1 active_A(x1) = x1 U71_A(x1,x2) = x1 + x2 + 4 U72_A(x1) = x1 + 1 isPal_A(x1) = x1 + 5 isNePal_A(x1) = x1 + 3 U61_A(x1) = x1 + 1 U81_A(x1) = x1 + 1 a_A() = 3 e_A() = 3 i_A() = 3 o_A() = 3 u_A() = 3 nil_A() = 1 The next rules are strictly ordered: p1, p2, p3, p4, p5, p7, p8, p9, p11, p12, p13, p14, p15, p16, p17 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(isNeList(V)) -> mark#(U31(isQid(V))) p2: active#(U21(tt(),V2)) -> mark#(U22(isList(V2))) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(U11(tt())) -> mark(tt()) r3: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r4: active(U22(tt())) -> mark(tt()) r5: active(U31(tt())) -> mark(tt()) r6: active(U42(tt())) -> mark(tt()) r7: active(U52(tt())) -> mark(tt()) r8: active(U71(tt(),P)) -> mark(U72(isPal(P))) r9: active(isNeList(V)) -> mark(U31(isQid(V))) r10: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r11: active(isNePal(V)) -> mark(U61(isQid(V))) r12: active(isPal(V)) -> mark(U81(isNePal(V))) r13: active(isQid(a())) -> mark(tt()) r14: active(isQid(e())) -> mark(tt()) r15: active(isQid(i())) -> mark(tt()) r16: active(isQid(o())) -> mark(tt()) r17: active(isQid(u())) -> mark(tt()) r18: U61(mark(X)) -> U61(X) r19: U61(active(X)) -> U61(X) r20: U71(mark(X1),X2) -> U71(X1,X2) r21: U71(X1,mark(X2)) -> U71(X1,X2) r22: U71(active(X1),X2) -> U71(X1,X2) r23: U71(X1,active(X2)) -> U71(X1,X2) r24: U72(mark(X)) -> U72(X) r25: U72(active(X)) -> U72(X) r26: isPal(mark(X)) -> isPal(X) r27: isPal(active(X)) -> isPal(X) r28: U81(mark(X)) -> U81(X) r29: U81(active(X)) -> U81(X) r30: isNePal(mark(X)) -> isNePal(X) r31: isNePal(active(X)) -> isNePal(X) r32: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r33: mark(nil()) -> active(nil()) r34: mark(U11(X)) -> active(U11(mark(X))) r35: mark(tt()) -> active(tt()) r36: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r37: mark(U22(X)) -> active(U22(mark(X))) r38: mark(isList(X)) -> active(isList(X)) r39: mark(U31(X)) -> active(U31(mark(X))) r40: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r41: mark(U42(X)) -> active(U42(mark(X))) r42: mark(isNeList(X)) -> active(isNeList(X)) r43: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r44: mark(U52(X)) -> active(U52(mark(X))) r45: mark(U61(X)) -> active(U61(mark(X))) r46: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r47: mark(U72(X)) -> active(U72(mark(X))) r48: mark(isPal(X)) -> active(isPal(X)) r49: mark(U81(X)) -> active(U81(mark(X))) r50: mark(isQid(X)) -> active(isQid(X)) r51: mark(isNePal(X)) -> active(isNePal(X)) r52: mark(a()) -> active(a()) r53: mark(e()) -> active(e()) r54: mark(i()) -> active(i()) r55: mark(o()) -> active(o()) r56: mark(u()) -> active(u()) r57: __(mark(X1),X2) -> __(X1,X2) r58: __(X1,mark(X2)) -> __(X1,X2) r59: __(active(X1),X2) -> __(X1,X2) r60: __(X1,active(X2)) -> __(X1,X2) r61: U11(mark(X)) -> U11(X) r62: U11(active(X)) -> U11(X) r63: U21(mark(X1),X2) -> U21(X1,X2) r64: U21(X1,mark(X2)) -> U21(X1,X2) r65: U21(active(X1),X2) -> U21(X1,X2) r66: U21(X1,active(X2)) -> U21(X1,X2) r67: U22(mark(X)) -> U22(X) r68: U22(active(X)) -> U22(X) r69: isList(mark(X)) -> isList(X) r70: isList(active(X)) -> isList(X) r71: U31(mark(X)) -> U31(X) r72: U31(active(X)) -> U31(X) r73: U41(mark(X1),X2) -> U41(X1,X2) r74: U41(X1,mark(X2)) -> U41(X1,X2) r75: U41(active(X1),X2) -> U41(X1,X2) r76: U41(X1,active(X2)) -> U41(X1,X2) r77: U42(mark(X)) -> U42(X) r78: U42(active(X)) -> U42(X) r79: isNeList(mark(X)) -> isNeList(X) r80: isNeList(active(X)) -> isNeList(X) r81: U51(mark(X1),X2) -> U51(X1,X2) r82: U51(X1,mark(X2)) -> U51(X1,X2) r83: U51(active(X1),X2) -> U51(X1,X2) r84: U51(X1,active(X2)) -> U51(X1,X2) r85: U52(mark(X)) -> U52(X) r86: U52(active(X)) -> U52(X) r87: isQid(mark(X)) -> isQid(X) r88: isQid(active(X)) -> isQid(X) The estimated dependency graph contains the following SCCs: (no SCCs) -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: __#(mark(X1),X2) -> __#(X1,X2) p2: __#(X1,active(X2)) -> __#(X1,X2) p3: __#(active(X1),X2) -> __#(X1,X2) p4: __#(X1,mark(X2)) -> __#(X1,X2) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: __#_A(x1,x2) = x2 mark_A(x1) = x1 + 1 active_A(x1) = x1 The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: __#(mark(X1),X2) -> __#(X1,X2) p2: __#(X1,active(X2)) -> __#(X1,X2) p3: __#(active(X1),X2) -> __#(X1,X2) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: __#(mark(X1),X2) -> __#(X1,X2) p2: __#(active(X1),X2) -> __#(X1,X2) p3: __#(X1,active(X2)) -> __#(X1,X2) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: __#_A(x1,x2) = x1 + x2 mark_A(x1) = x1 + 1 active_A(x1) = x1 The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76, r77, r78, r79, r80, r81, r82, r83, r84, r85, r86, r87, r88, r89, r90, r91, r92, r93, r94, r95, r96, r97, r98, r99, r100, r101 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: __#(active(X1),X2) -> __#(X1,X2) p2: __#(X1,active(X2)) -> __#(X1,X2) and R consists of: (no rules) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: __#(active(X1),X2) -> __#(X1,X2) p2: __#(X1,active(X2)) -> __#(X1,X2) and R consists of: (no rules) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: __#_A(x1,x2) = x2 active_A(x1) = x1 + 1 The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: __#(active(X1),X2) -> __#(X1,X2) and R consists of: (no rules) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: __#(active(X1),X2) -> __#(X1,X2) and R consists of: (no rules) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: __#_A(x1,x2) = x1 active_A(x1) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U22#(mark(X)) -> U22#(X) p2: U22#(active(X)) -> U22#(X) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: U22#_A(x1) = x1 mark_A(x1) = x1 + 1 active_A(x1) = x1 The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76, r77, r78, r79, r80, r81, r82, r83, r84, r85, r86, r87, r88, r89, r90, r91, r92, r93, r94, r95, r96, r97, r98, r99, r100, r101 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U22#(active(X)) -> U22#(X) and R consists of: (no rules) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U22#(active(X)) -> U22#(X) and R consists of: (no rules) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: U22#_A(x1) = x1 active_A(x1) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isList#(mark(X)) -> isList#(X) p2: isList#(active(X)) -> isList#(X) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: isList#_A(x1) = x1 mark_A(x1) = x1 + 1 active_A(x1) = x1 The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76, r77, r78, r79, r80, r81, r82, r83, r84, r85, r86, r87, r88, r89, r90, r91, r92, r93, r94, r95, r96, r97, r98, r99, r100, r101 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isList#(active(X)) -> isList#(X) and R consists of: (no rules) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isList#(active(X)) -> isList#(X) and R consists of: (no rules) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: isList#_A(x1) = x1 active_A(x1) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U42#(mark(X)) -> U42#(X) p2: U42#(active(X)) -> U42#(X) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: U42#_A(x1) = x1 mark_A(x1) = x1 + 1 active_A(x1) = x1 The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76, r77, r78, r79, r80, r81, r82, r83, r84, r85, r86, r87, r88, r89, r90, r91, r92, r93, r94, r95, r96, r97, r98, r99, r100, r101 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U42#(active(X)) -> U42#(X) and R consists of: (no rules) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U42#(active(X)) -> U42#(X) and R consists of: (no rules) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: U42#_A(x1) = x1 active_A(x1) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNeList#(mark(X)) -> isNeList#(X) p2: isNeList#(active(X)) -> isNeList#(X) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: isNeList#_A(x1) = x1 mark_A(x1) = x1 + 1 active_A(x1) = x1 The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76, r77, r78, r79, r80, r81, r82, r83, r84, r85, r86, r87, r88, r89, r90, r91, r92, r93, r94, r95, r96, r97, r98, r99, r100, r101 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isNeList#(active(X)) -> isNeList#(X) and R consists of: (no rules) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNeList#(active(X)) -> isNeList#(X) and R consists of: (no rules) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: isNeList#_A(x1) = x1 active_A(x1) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U52#(mark(X)) -> U52#(X) p2: U52#(active(X)) -> U52#(X) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: U52#_A(x1) = x1 mark_A(x1) = x1 + 1 active_A(x1) = x1 The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76, r77, r78, r79, r80, r81, r82, r83, r84, r85, r86, r87, r88, r89, r90, r91, r92, r93, r94, r95, r96, r97, r98, r99, r100, r101 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U52#(active(X)) -> U52#(X) and R consists of: (no rules) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U52#(active(X)) -> U52#(X) and R consists of: (no rules) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: U52#_A(x1) = x1 active_A(x1) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U72#(mark(X)) -> U72#(X) p2: U72#(active(X)) -> U72#(X) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: U72#_A(x1) = x1 mark_A(x1) = x1 + 1 active_A(x1) = x1 The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76, r77, r78, r79, r80, r81, r82, r83, r84, r85, r86, r87, r88, r89, r90, r91, r92, r93, r94, r95, r96, r97, r98, r99, r100, r101 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U72#(active(X)) -> U72#(X) and R consists of: (no rules) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U72#(active(X)) -> U72#(X) and R consists of: (no rules) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: U72#_A(x1) = x1 active_A(x1) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isPal#(mark(X)) -> isPal#(X) p2: isPal#(active(X)) -> isPal#(X) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: isPal#_A(x1) = x1 mark_A(x1) = x1 + 1 active_A(x1) = x1 The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76, r77, r78, r79, r80, r81, r82, r83, r84, r85, r86, r87, r88, r89, r90, r91, r92, r93, r94, r95, r96, r97, r98, r99, r100, r101 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isPal#(active(X)) -> isPal#(X) and R consists of: (no rules) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isPal#(active(X)) -> isPal#(X) and R consists of: (no rules) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: isPal#_A(x1) = x1 active_A(x1) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U11#(mark(X)) -> U11#(X) p2: U11#(active(X)) -> U11#(X) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: U11#_A(x1) = x1 mark_A(x1) = x1 + 1 active_A(x1) = x1 The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76, r77, r78, r79, r80, r81, r82, r83, r84, r85, r86, r87, r88, r89, r90, r91, r92, r93, r94, r95, r96, r97, r98, r99, r100, r101 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U11#(active(X)) -> U11#(X) and R consists of: (no rules) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U11#(active(X)) -> U11#(X) and R consists of: (no rules) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: U11#_A(x1) = x1 active_A(x1) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U21#(mark(X1),X2) -> U21#(X1,X2) p2: U21#(X1,active(X2)) -> U21#(X1,X2) p3: U21#(active(X1),X2) -> U21#(X1,X2) p4: U21#(X1,mark(X2)) -> U21#(X1,X2) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: U21#_A(x1,x2) = x2 mark_A(x1) = x1 + 1 active_A(x1) = x1 The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U21#(mark(X1),X2) -> U21#(X1,X2) p2: U21#(X1,active(X2)) -> U21#(X1,X2) p3: U21#(active(X1),X2) -> U21#(X1,X2) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U21#(mark(X1),X2) -> U21#(X1,X2) p2: U21#(active(X1),X2) -> U21#(X1,X2) p3: U21#(X1,active(X2)) -> U21#(X1,X2) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: U21#_A(x1,x2) = x1 + x2 mark_A(x1) = x1 + 1 active_A(x1) = x1 The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76, r77, r78, r79, r80, r81, r82, r83, r84, r85, r86, r87, r88, r89, r90, r91, r92, r93, r94, r95, r96, r97, r98, r99, r100, r101 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U21#(active(X1),X2) -> U21#(X1,X2) p2: U21#(X1,active(X2)) -> U21#(X1,X2) and R consists of: (no rules) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U21#(active(X1),X2) -> U21#(X1,X2) p2: U21#(X1,active(X2)) -> U21#(X1,X2) and R consists of: (no rules) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: U21#_A(x1,x2) = x2 active_A(x1) = x1 + 1 The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U21#(active(X1),X2) -> U21#(X1,X2) and R consists of: (no rules) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U21#(active(X1),X2) -> U21#(X1,X2) and R consists of: (no rules) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: U21#_A(x1,x2) = x1 active_A(x1) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U31#(mark(X)) -> U31#(X) p2: U31#(active(X)) -> U31#(X) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: U31#_A(x1) = x1 mark_A(x1) = x1 + 1 active_A(x1) = x1 The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76, r77, r78, r79, r80, r81, r82, r83, r84, r85, r86, r87, r88, r89, r90, r91, r92, r93, r94, r95, r96, r97, r98, r99, r100, r101 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U31#(active(X)) -> U31#(X) and R consists of: (no rules) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U31#(active(X)) -> U31#(X) and R consists of: (no rules) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: U31#_A(x1) = x1 active_A(x1) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isQid#(mark(X)) -> isQid#(X) p2: isQid#(active(X)) -> isQid#(X) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: isQid#_A(x1) = x1 mark_A(x1) = x1 + 1 active_A(x1) = x1 The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76, r77, r78, r79, r80, r81, r82, r83, r84, r85, r86, r87, r88, r89, r90, r91, r92, r93, r94, r95, r96, r97, r98, r99, r100, r101 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isQid#(active(X)) -> isQid#(X) and R consists of: (no rules) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isQid#(active(X)) -> isQid#(X) and R consists of: (no rules) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: isQid#_A(x1) = x1 active_A(x1) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U41#(mark(X1),X2) -> U41#(X1,X2) p2: U41#(X1,active(X2)) -> U41#(X1,X2) p3: U41#(active(X1),X2) -> U41#(X1,X2) p4: U41#(X1,mark(X2)) -> U41#(X1,X2) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: U41#_A(x1,x2) = x2 mark_A(x1) = x1 + 1 active_A(x1) = x1 The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U41#(mark(X1),X2) -> U41#(X1,X2) p2: U41#(X1,active(X2)) -> U41#(X1,X2) p3: U41#(active(X1),X2) -> U41#(X1,X2) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U41#(mark(X1),X2) -> U41#(X1,X2) p2: U41#(active(X1),X2) -> U41#(X1,X2) p3: U41#(X1,active(X2)) -> U41#(X1,X2) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: U41#_A(x1,x2) = x1 + x2 mark_A(x1) = x1 + 1 active_A(x1) = x1 The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76, r77, r78, r79, r80, r81, r82, r83, r84, r85, r86, r87, r88, r89, r90, r91, r92, r93, r94, r95, r96, r97, r98, r99, r100, r101 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U41#(active(X1),X2) -> U41#(X1,X2) p2: U41#(X1,active(X2)) -> U41#(X1,X2) and R consists of: (no rules) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U41#(active(X1),X2) -> U41#(X1,X2) p2: U41#(X1,active(X2)) -> U41#(X1,X2) and R consists of: (no rules) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: U41#_A(x1,x2) = x2 active_A(x1) = x1 + 1 The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U41#(active(X1),X2) -> U41#(X1,X2) and R consists of: (no rules) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U41#(active(X1),X2) -> U41#(X1,X2) and R consists of: (no rules) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: U41#_A(x1,x2) = x1 active_A(x1) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U51#(mark(X1),X2) -> U51#(X1,X2) p2: U51#(X1,active(X2)) -> U51#(X1,X2) p3: U51#(active(X1),X2) -> U51#(X1,X2) p4: U51#(X1,mark(X2)) -> U51#(X1,X2) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: U51#_A(x1,x2) = x2 mark_A(x1) = x1 + 1 active_A(x1) = x1 The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U51#(mark(X1),X2) -> U51#(X1,X2) p2: U51#(X1,active(X2)) -> U51#(X1,X2) p3: U51#(active(X1),X2) -> U51#(X1,X2) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U51#(mark(X1),X2) -> U51#(X1,X2) p2: U51#(active(X1),X2) -> U51#(X1,X2) p3: U51#(X1,active(X2)) -> U51#(X1,X2) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: U51#_A(x1,x2) = x1 + x2 mark_A(x1) = x1 + 1 active_A(x1) = x1 The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76, r77, r78, r79, r80, r81, r82, r83, r84, r85, r86, r87, r88, r89, r90, r91, r92, r93, r94, r95, r96, r97, r98, r99, r100, r101 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U51#(active(X1),X2) -> U51#(X1,X2) p2: U51#(X1,active(X2)) -> U51#(X1,X2) and R consists of: (no rules) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U51#(active(X1),X2) -> U51#(X1,X2) p2: U51#(X1,active(X2)) -> U51#(X1,X2) and R consists of: (no rules) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: U51#_A(x1,x2) = x2 active_A(x1) = x1 + 1 The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U51#(active(X1),X2) -> U51#(X1,X2) and R consists of: (no rules) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U51#(active(X1),X2) -> U51#(X1,X2) and R consists of: (no rules) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: U51#_A(x1,x2) = x1 active_A(x1) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U61#(mark(X)) -> U61#(X) p2: U61#(active(X)) -> U61#(X) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: U61#_A(x1) = x1 mark_A(x1) = x1 + 1 active_A(x1) = x1 The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76, r77, r78, r79, r80, r81, r82, r83, r84, r85, r86, r87, r88, r89, r90, r91, r92, r93, r94, r95, r96, r97, r98, r99, r100, r101 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U61#(active(X)) -> U61#(X) and R consists of: (no rules) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U61#(active(X)) -> U61#(X) and R consists of: (no rules) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: U61#_A(x1) = x1 active_A(x1) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U71#(mark(X1),X2) -> U71#(X1,X2) p2: U71#(X1,active(X2)) -> U71#(X1,X2) p3: U71#(active(X1),X2) -> U71#(X1,X2) p4: U71#(X1,mark(X2)) -> U71#(X1,X2) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: U71#_A(x1,x2) = x2 mark_A(x1) = x1 + 1 active_A(x1) = x1 The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U71#(mark(X1),X2) -> U71#(X1,X2) p2: U71#(X1,active(X2)) -> U71#(X1,X2) p3: U71#(active(X1),X2) -> U71#(X1,X2) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U71#(mark(X1),X2) -> U71#(X1,X2) p2: U71#(active(X1),X2) -> U71#(X1,X2) p3: U71#(X1,active(X2)) -> U71#(X1,X2) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: U71#_A(x1,x2) = x1 + x2 mark_A(x1) = x1 + 1 active_A(x1) = x1 The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76, r77, r78, r79, r80, r81, r82, r83, r84, r85, r86, r87, r88, r89, r90, r91, r92, r93, r94, r95, r96, r97, r98, r99, r100, r101 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U71#(active(X1),X2) -> U71#(X1,X2) p2: U71#(X1,active(X2)) -> U71#(X1,X2) and R consists of: (no rules) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U71#(active(X1),X2) -> U71#(X1,X2) p2: U71#(X1,active(X2)) -> U71#(X1,X2) and R consists of: (no rules) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: U71#_A(x1,x2) = x2 active_A(x1) = x1 + 1 The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U71#(active(X1),X2) -> U71#(X1,X2) and R consists of: (no rules) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U71#(active(X1),X2) -> U71#(X1,X2) and R consists of: (no rules) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: U71#_A(x1,x2) = x1 active_A(x1) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U81#(mark(X)) -> U81#(X) p2: U81#(active(X)) -> U81#(X) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: U81#_A(x1) = x1 mark_A(x1) = x1 + 1 active_A(x1) = x1 The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76, r77, r78, r79, r80, r81, r82, r83, r84, r85, r86, r87, r88, r89, r90, r91, r92, r93, r94, r95, r96, r97, r98, r99, r100, r101 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U81#(active(X)) -> U81#(X) and R consists of: (no rules) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U81#(active(X)) -> U81#(X) and R consists of: (no rules) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: U81#_A(x1) = x1 active_A(x1) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNePal#(mark(X)) -> isNePal#(X) p2: isNePal#(active(X)) -> isNePal#(X) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: isNePal#_A(x1) = x1 mark_A(x1) = x1 + 1 active_A(x1) = x1 The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76, r77, r78, r79, r80, r81, r82, r83, r84, r85, r86, r87, r88, r89, r90, r91, r92, r93, r94, r95, r96, r97, r98, r99, r100, r101 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: isNePal#(active(X)) -> isNePal#(X) and R consists of: (no rules) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNePal#(active(X)) -> isNePal#(X) and R consists of: (no rules) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: isNePal#_A(x1) = x1 active_A(x1) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.