YES We show the termination of the TRS R: from(X) -> cons(X,n__from(n__s(X))) |2ndspos|(|0|(),Z) -> rnil() |2ndspos|(s(N),cons(X,Z)) -> |2ndspos|(s(N),cons2(X,activate(Z))) |2ndspos|(s(N),cons2(X,cons(Y,Z))) -> rcons(posrecip(Y),|2ndsneg|(N,activate(Z))) |2ndsneg|(|0|(),Z) -> rnil() |2ndsneg|(s(N),cons(X,Z)) -> |2ndsneg|(s(N),cons2(X,activate(Z))) |2ndsneg|(s(N),cons2(X,cons(Y,Z))) -> rcons(negrecip(Y),|2ndspos|(N,activate(Z))) pi(X) -> |2ndspos|(X,from(|0|())) plus(|0|(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) times(|0|(),Y) -> |0|() times(s(X),Y) -> plus(Y,times(X,Y)) square(X) -> times(X,X) from(X) -> n__from(X) s(X) -> n__s(X) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: |2ndspos|#(s(N),cons(X,Z)) -> |2ndspos|#(s(N),cons2(X,activate(Z))) p2: |2ndspos|#(s(N),cons(X,Z)) -> activate#(Z) p3: |2ndspos|#(s(N),cons2(X,cons(Y,Z))) -> |2ndsneg|#(N,activate(Z)) p4: |2ndspos|#(s(N),cons2(X,cons(Y,Z))) -> activate#(Z) p5: |2ndsneg|#(s(N),cons(X,Z)) -> |2ndsneg|#(s(N),cons2(X,activate(Z))) p6: |2ndsneg|#(s(N),cons(X,Z)) -> activate#(Z) p7: |2ndsneg|#(s(N),cons2(X,cons(Y,Z))) -> |2ndspos|#(N,activate(Z)) p8: |2ndsneg|#(s(N),cons2(X,cons(Y,Z))) -> activate#(Z) p9: pi#(X) -> |2ndspos|#(X,from(|0|())) p10: pi#(X) -> from#(|0|()) p11: plus#(s(X),Y) -> s#(plus(X,Y)) p12: plus#(s(X),Y) -> plus#(X,Y) p13: times#(s(X),Y) -> plus#(Y,times(X,Y)) p14: times#(s(X),Y) -> times#(X,Y) p15: square#(X) -> times#(X,X) p16: activate#(n__from(X)) -> from#(activate(X)) p17: activate#(n__from(X)) -> activate#(X) p18: activate#(n__s(X)) -> s#(activate(X)) p19: activate#(n__s(X)) -> activate#(X) and R consists of: r1: from(X) -> cons(X,n__from(n__s(X))) r2: |2ndspos|(|0|(),Z) -> rnil() r3: |2ndspos|(s(N),cons(X,Z)) -> |2ndspos|(s(N),cons2(X,activate(Z))) r4: |2ndspos|(s(N),cons2(X,cons(Y,Z))) -> rcons(posrecip(Y),|2ndsneg|(N,activate(Z))) r5: |2ndsneg|(|0|(),Z) -> rnil() r6: |2ndsneg|(s(N),cons(X,Z)) -> |2ndsneg|(s(N),cons2(X,activate(Z))) r7: |2ndsneg|(s(N),cons2(X,cons(Y,Z))) -> rcons(negrecip(Y),|2ndspos|(N,activate(Z))) r8: pi(X) -> |2ndspos|(X,from(|0|())) r9: plus(|0|(),Y) -> Y r10: plus(s(X),Y) -> s(plus(X,Y)) r11: times(|0|(),Y) -> |0|() r12: times(s(X),Y) -> plus(Y,times(X,Y)) r13: square(X) -> times(X,X) r14: from(X) -> n__from(X) r15: s(X) -> n__s(X) r16: activate(n__from(X)) -> from(activate(X)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p3, p5, p7} {p17, p19} {p14} {p12} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: |2ndspos|#(s(N),cons(X,Z)) -> |2ndspos|#(s(N),cons2(X,activate(Z))) p2: |2ndspos|#(s(N),cons2(X,cons(Y,Z))) -> |2ndsneg|#(N,activate(Z)) p3: |2ndsneg|#(s(N),cons2(X,cons(Y,Z))) -> |2ndspos|#(N,activate(Z)) p4: |2ndsneg|#(s(N),cons(X,Z)) -> |2ndsneg|#(s(N),cons2(X,activate(Z))) and R consists of: r1: from(X) -> cons(X,n__from(n__s(X))) r2: |2ndspos|(|0|(),Z) -> rnil() r3: |2ndspos|(s(N),cons(X,Z)) -> |2ndspos|(s(N),cons2(X,activate(Z))) r4: |2ndspos|(s(N),cons2(X,cons(Y,Z))) -> rcons(posrecip(Y),|2ndsneg|(N,activate(Z))) r5: |2ndsneg|(|0|(),Z) -> rnil() r6: |2ndsneg|(s(N),cons(X,Z)) -> |2ndsneg|(s(N),cons2(X,activate(Z))) r7: |2ndsneg|(s(N),cons2(X,cons(Y,Z))) -> rcons(negrecip(Y),|2ndspos|(N,activate(Z))) r8: pi(X) -> |2ndspos|(X,from(|0|())) r9: plus(|0|(),Y) -> Y r10: plus(s(X),Y) -> s(plus(X,Y)) r11: times(|0|(),Y) -> |0|() r12: times(s(X),Y) -> plus(Y,times(X,Y)) r13: square(X) -> times(X,X) r14: from(X) -> n__from(X) r15: s(X) -> n__s(X) r16: activate(n__from(X)) -> from(activate(X)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The set of usable rules consists of r1, r14, r15, r16, r17, r18 Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: |2ndspos|#_A(x1,x2) = x1 + 1 s_A(x1) = x1 + 1 cons_A(x1,x2) = x2 cons2_A(x1,x2) = x1 + x2 + 1 activate_A(x1) = x1 + 1 |2ndsneg|#_A(x1,x2) = x1 from_A(x1) = 1 n__from_A(x1) = 1 n__s_A(x1) = x1 + 1 The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: |2ndspos|#(s(N),cons(X,Z)) -> |2ndspos|#(s(N),cons2(X,activate(Z))) p2: |2ndsneg|#(s(N),cons2(X,cons(Y,Z))) -> |2ndspos|#(N,activate(Z)) p3: |2ndsneg|#(s(N),cons(X,Z)) -> |2ndsneg|#(s(N),cons2(X,activate(Z))) and R consists of: r1: from(X) -> cons(X,n__from(n__s(X))) r2: |2ndspos|(|0|(),Z) -> rnil() r3: |2ndspos|(s(N),cons(X,Z)) -> |2ndspos|(s(N),cons2(X,activate(Z))) r4: |2ndspos|(s(N),cons2(X,cons(Y,Z))) -> rcons(posrecip(Y),|2ndsneg|(N,activate(Z))) r5: |2ndsneg|(|0|(),Z) -> rnil() r6: |2ndsneg|(s(N),cons(X,Z)) -> |2ndsneg|(s(N),cons2(X,activate(Z))) r7: |2ndsneg|(s(N),cons2(X,cons(Y,Z))) -> rcons(negrecip(Y),|2ndspos|(N,activate(Z))) r8: pi(X) -> |2ndspos|(X,from(|0|())) r9: plus(|0|(),Y) -> Y r10: plus(s(X),Y) -> s(plus(X,Y)) r11: times(|0|(),Y) -> |0|() r12: times(s(X),Y) -> plus(Y,times(X,Y)) r13: square(X) -> times(X,X) r14: from(X) -> n__from(X) r15: s(X) -> n__s(X) r16: activate(n__from(X)) -> from(activate(X)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: (no SCCs) -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) p2: activate#(n__from(X)) -> activate#(X) and R consists of: r1: from(X) -> cons(X,n__from(n__s(X))) r2: |2ndspos|(|0|(),Z) -> rnil() r3: |2ndspos|(s(N),cons(X,Z)) -> |2ndspos|(s(N),cons2(X,activate(Z))) r4: |2ndspos|(s(N),cons2(X,cons(Y,Z))) -> rcons(posrecip(Y),|2ndsneg|(N,activate(Z))) r5: |2ndsneg|(|0|(),Z) -> rnil() r6: |2ndsneg|(s(N),cons(X,Z)) -> |2ndsneg|(s(N),cons2(X,activate(Z))) r7: |2ndsneg|(s(N),cons2(X,cons(Y,Z))) -> rcons(negrecip(Y),|2ndspos|(N,activate(Z))) r8: pi(X) -> |2ndspos|(X,from(|0|())) r9: plus(|0|(),Y) -> Y r10: plus(s(X),Y) -> s(plus(X,Y)) r11: times(|0|(),Y) -> |0|() r12: times(s(X),Y) -> plus(Y,times(X,Y)) r13: square(X) -> times(X,X) r14: from(X) -> n__from(X) r15: s(X) -> n__s(X) r16: activate(n__from(X)) -> from(activate(X)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: activate#_A(x1) = x1 n__s_A(x1) = x1 + 1 n__from_A(x1) = x1 The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__from(X)) -> activate#(X) and R consists of: (no rules) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__from(X)) -> activate#(X) and R consists of: (no rules) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: activate#_A(x1) = x1 n__from_A(x1) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: times#(s(X),Y) -> times#(X,Y) and R consists of: r1: from(X) -> cons(X,n__from(n__s(X))) r2: |2ndspos|(|0|(),Z) -> rnil() r3: |2ndspos|(s(N),cons(X,Z)) -> |2ndspos|(s(N),cons2(X,activate(Z))) r4: |2ndspos|(s(N),cons2(X,cons(Y,Z))) -> rcons(posrecip(Y),|2ndsneg|(N,activate(Z))) r5: |2ndsneg|(|0|(),Z) -> rnil() r6: |2ndsneg|(s(N),cons(X,Z)) -> |2ndsneg|(s(N),cons2(X,activate(Z))) r7: |2ndsneg|(s(N),cons2(X,cons(Y,Z))) -> rcons(negrecip(Y),|2ndspos|(N,activate(Z))) r8: pi(X) -> |2ndspos|(X,from(|0|())) r9: plus(|0|(),Y) -> Y r10: plus(s(X),Y) -> s(plus(X,Y)) r11: times(|0|(),Y) -> |0|() r12: times(s(X),Y) -> plus(Y,times(X,Y)) r13: square(X) -> times(X,X) r14: from(X) -> n__from(X) r15: s(X) -> n__s(X) r16: activate(n__from(X)) -> from(activate(X)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: times#_A(x1,x2) = x1 s_A(x1) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: plus#(s(X),Y) -> plus#(X,Y) and R consists of: r1: from(X) -> cons(X,n__from(n__s(X))) r2: |2ndspos|(|0|(),Z) -> rnil() r3: |2ndspos|(s(N),cons(X,Z)) -> |2ndspos|(s(N),cons2(X,activate(Z))) r4: |2ndspos|(s(N),cons2(X,cons(Y,Z))) -> rcons(posrecip(Y),|2ndsneg|(N,activate(Z))) r5: |2ndsneg|(|0|(),Z) -> rnil() r6: |2ndsneg|(s(N),cons(X,Z)) -> |2ndsneg|(s(N),cons2(X,activate(Z))) r7: |2ndsneg|(s(N),cons2(X,cons(Y,Z))) -> rcons(negrecip(Y),|2ndspos|(N,activate(Z))) r8: pi(X) -> |2ndspos|(X,from(|0|())) r9: plus(|0|(),Y) -> Y r10: plus(s(X),Y) -> s(plus(X,Y)) r11: times(|0|(),Y) -> |0|() r12: times(s(X),Y) -> plus(Y,times(X,Y)) r13: square(X) -> times(X,X) r14: from(X) -> n__from(X) r15: s(X) -> n__s(X) r16: activate(n__from(X)) -> from(activate(X)) r17: activate(n__s(X)) -> s(activate(X)) r18: activate(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: plus#_A(x1,x2) = x1 s_A(x1) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.