YES We show the termination of the TRS R: active(eq(|0|(),|0|())) -> mark(true()) active(eq(s(X),s(Y))) -> mark(eq(X,Y)) active(eq(X,Y)) -> mark(false()) active(inf(X)) -> mark(cons(X,inf(s(X)))) active(take(|0|(),X)) -> mark(nil()) active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) active(length(nil())) -> mark(|0|()) active(length(cons(X,L))) -> mark(s(length(L))) mark(eq(X1,X2)) -> active(eq(X1,X2)) mark(|0|()) -> active(|0|()) mark(true()) -> active(true()) mark(s(X)) -> active(s(X)) mark(false()) -> active(false()) mark(inf(X)) -> active(inf(mark(X))) mark(cons(X1,X2)) -> active(cons(X1,X2)) mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) mark(nil()) -> active(nil()) mark(length(X)) -> active(length(mark(X))) eq(mark(X1),X2) -> eq(X1,X2) eq(X1,mark(X2)) -> eq(X1,X2) eq(active(X1),X2) -> eq(X1,X2) eq(X1,active(X2)) -> eq(X1,X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) inf(mark(X)) -> inf(X) inf(active(X)) -> inf(X) cons(mark(X1),X2) -> cons(X1,X2) cons(X1,mark(X2)) -> cons(X1,X2) cons(active(X1),X2) -> cons(X1,X2) cons(X1,active(X2)) -> cons(X1,X2) take(mark(X1),X2) -> take(X1,X2) take(X1,mark(X2)) -> take(X1,X2) take(active(X1),X2) -> take(X1,X2) take(X1,active(X2)) -> take(X1,X2) length(mark(X)) -> length(X) length(active(X)) -> length(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(eq(|0|(),|0|())) -> mark#(true()) p2: active#(eq(s(X),s(Y))) -> mark#(eq(X,Y)) p3: active#(eq(s(X),s(Y))) -> eq#(X,Y) p4: active#(eq(X,Y)) -> mark#(false()) p5: active#(inf(X)) -> mark#(cons(X,inf(s(X)))) p6: active#(inf(X)) -> cons#(X,inf(s(X))) p7: active#(inf(X)) -> inf#(s(X)) p8: active#(inf(X)) -> s#(X) p9: active#(take(|0|(),X)) -> mark#(nil()) p10: active#(take(s(X),cons(Y,L))) -> mark#(cons(Y,take(X,L))) p11: active#(take(s(X),cons(Y,L))) -> cons#(Y,take(X,L)) p12: active#(take(s(X),cons(Y,L))) -> take#(X,L) p13: active#(length(nil())) -> mark#(|0|()) p14: active#(length(cons(X,L))) -> mark#(s(length(L))) p15: active#(length(cons(X,L))) -> s#(length(L)) p16: active#(length(cons(X,L))) -> length#(L) p17: mark#(eq(X1,X2)) -> active#(eq(X1,X2)) p18: mark#(|0|()) -> active#(|0|()) p19: mark#(true()) -> active#(true()) p20: mark#(s(X)) -> active#(s(X)) p21: mark#(false()) -> active#(false()) p22: mark#(inf(X)) -> active#(inf(mark(X))) p23: mark#(inf(X)) -> inf#(mark(X)) p24: mark#(inf(X)) -> mark#(X) p25: mark#(cons(X1,X2)) -> active#(cons(X1,X2)) p26: mark#(take(X1,X2)) -> active#(take(mark(X1),mark(X2))) p27: mark#(take(X1,X2)) -> take#(mark(X1),mark(X2)) p28: mark#(take(X1,X2)) -> mark#(X1) p29: mark#(take(X1,X2)) -> mark#(X2) p30: mark#(nil()) -> active#(nil()) p31: mark#(length(X)) -> active#(length(mark(X))) p32: mark#(length(X)) -> length#(mark(X)) p33: mark#(length(X)) -> mark#(X) p34: eq#(mark(X1),X2) -> eq#(X1,X2) p35: eq#(X1,mark(X2)) -> eq#(X1,X2) p36: eq#(active(X1),X2) -> eq#(X1,X2) p37: eq#(X1,active(X2)) -> eq#(X1,X2) p38: s#(mark(X)) -> s#(X) p39: s#(active(X)) -> s#(X) p40: inf#(mark(X)) -> inf#(X) p41: inf#(active(X)) -> inf#(X) p42: cons#(mark(X1),X2) -> cons#(X1,X2) p43: cons#(X1,mark(X2)) -> cons#(X1,X2) p44: cons#(active(X1),X2) -> cons#(X1,X2) p45: cons#(X1,active(X2)) -> cons#(X1,X2) p46: take#(mark(X1),X2) -> take#(X1,X2) p47: take#(X1,mark(X2)) -> take#(X1,X2) p48: take#(active(X1),X2) -> take#(X1,X2) p49: take#(X1,active(X2)) -> take#(X1,X2) p50: length#(mark(X)) -> length#(X) p51: length#(active(X)) -> length#(X) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The estimated dependency graph contains the following SCCs: {p2, p5, p10, p14, p17, p20, p22, p24, p25, p26, p28, p29, p31, p33} {p34, p35, p36, p37} {p42, p43, p44, p45} {p40, p41} {p38, p39} {p46, p47, p48, p49} {p50, p51} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(length(X)) -> active#(length(mark(X))) p2: active#(length(cons(X,L))) -> mark#(s(length(L))) p3: mark#(length(X)) -> mark#(X) p4: mark#(take(X1,X2)) -> mark#(X2) p5: mark#(take(X1,X2)) -> mark#(X1) p6: mark#(take(X1,X2)) -> active#(take(mark(X1),mark(X2))) p7: active#(take(s(X),cons(Y,L))) -> mark#(cons(Y,take(X,L))) p8: mark#(cons(X1,X2)) -> active#(cons(X1,X2)) p9: active#(inf(X)) -> mark#(cons(X,inf(s(X)))) p10: mark#(inf(X)) -> mark#(X) p11: mark#(inf(X)) -> active#(inf(mark(X))) p12: active#(eq(s(X),s(Y))) -> mark#(eq(X,Y)) p13: mark#(s(X)) -> active#(s(X)) p14: mark#(eq(X1,X2)) -> active#(eq(X1,X2)) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36 Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: mark#_A(x1) = 2 length_A(x1) = 2 active#_A(x1) = x1 mark_A(x1) = 2 cons_A(x1,x2) = 1 s_A(x1) = 0 take_A(x1,x2) = 2 inf_A(x1) = 2 eq_A(x1,x2) = 2 active_A(x1) = x1 |0|_A() = 0 true_A() = 0 false_A() = 0 nil_A() = 1 The next rules are strictly ordered: p8, p13 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(length(X)) -> active#(length(mark(X))) p2: active#(length(cons(X,L))) -> mark#(s(length(L))) p3: mark#(length(X)) -> mark#(X) p4: mark#(take(X1,X2)) -> mark#(X2) p5: mark#(take(X1,X2)) -> mark#(X1) p6: mark#(take(X1,X2)) -> active#(take(mark(X1),mark(X2))) p7: active#(take(s(X),cons(Y,L))) -> mark#(cons(Y,take(X,L))) p8: active#(inf(X)) -> mark#(cons(X,inf(s(X)))) p9: mark#(inf(X)) -> mark#(X) p10: mark#(inf(X)) -> active#(inf(mark(X))) p11: active#(eq(s(X),s(Y))) -> mark#(eq(X,Y)) p12: mark#(eq(X1,X2)) -> active#(eq(X1,X2)) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(length(X)) -> active#(length(mark(X))) p2: active#(eq(s(X),s(Y))) -> mark#(eq(X,Y)) p3: mark#(eq(X1,X2)) -> active#(eq(X1,X2)) p4: active#(inf(X)) -> mark#(cons(X,inf(s(X)))) p5: mark#(inf(X)) -> active#(inf(mark(X))) p6: active#(take(s(X),cons(Y,L))) -> mark#(cons(Y,take(X,L))) p7: mark#(inf(X)) -> mark#(X) p8: mark#(take(X1,X2)) -> active#(take(mark(X1),mark(X2))) p9: active#(length(cons(X,L))) -> mark#(s(length(L))) p10: mark#(take(X1,X2)) -> mark#(X1) p11: mark#(take(X1,X2)) -> mark#(X2) p12: mark#(length(X)) -> mark#(X) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36 Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: mark#_A(x1) = x1 length_A(x1) = x1 active#_A(x1) = 0 mark_A(x1) = x1 eq_A(x1,x2) = 0 s_A(x1) = 0 inf_A(x1) = x1 cons_A(x1,x2) = 0 take_A(x1,x2) = x1 + x2 + 1 active_A(x1) = x1 |0|_A() = 1 true_A() = 0 false_A() = 0 nil_A() = 1 The next rules are strictly ordered: p8, p10, p11 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(length(X)) -> active#(length(mark(X))) p2: active#(eq(s(X),s(Y))) -> mark#(eq(X,Y)) p3: mark#(eq(X1,X2)) -> active#(eq(X1,X2)) p4: active#(inf(X)) -> mark#(cons(X,inf(s(X)))) p5: mark#(inf(X)) -> active#(inf(mark(X))) p6: active#(take(s(X),cons(Y,L))) -> mark#(cons(Y,take(X,L))) p7: mark#(inf(X)) -> mark#(X) p8: active#(length(cons(X,L))) -> mark#(s(length(L))) p9: mark#(length(X)) -> mark#(X) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(length(X)) -> active#(length(mark(X))) p2: active#(length(cons(X,L))) -> mark#(s(length(L))) p3: mark#(length(X)) -> mark#(X) p4: mark#(inf(X)) -> mark#(X) p5: mark#(inf(X)) -> active#(inf(mark(X))) p6: active#(take(s(X),cons(Y,L))) -> mark#(cons(Y,take(X,L))) p7: mark#(eq(X1,X2)) -> active#(eq(X1,X2)) p8: active#(inf(X)) -> mark#(cons(X,inf(s(X)))) p9: active#(eq(s(X),s(Y))) -> mark#(eq(X,Y)) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36 Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: mark#_A(x1) = 1 length_A(x1) = 1 active#_A(x1) = x1 mark_A(x1) = 1 cons_A(x1,x2) = 1 s_A(x1) = 1 inf_A(x1) = 1 take_A(x1,x2) = 2 eq_A(x1,x2) = 1 active_A(x1) = 1 |0|_A() = 1 true_A() = 1 false_A() = 1 nil_A() = 1 The next rules are strictly ordered: p6 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(length(X)) -> active#(length(mark(X))) p2: active#(length(cons(X,L))) -> mark#(s(length(L))) p3: mark#(length(X)) -> mark#(X) p4: mark#(inf(X)) -> mark#(X) p5: mark#(inf(X)) -> active#(inf(mark(X))) p6: mark#(eq(X1,X2)) -> active#(eq(X1,X2)) p7: active#(inf(X)) -> mark#(cons(X,inf(s(X)))) p8: active#(eq(s(X),s(Y))) -> mark#(eq(X,Y)) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(length(X)) -> active#(length(mark(X))) p2: active#(eq(s(X),s(Y))) -> mark#(eq(X,Y)) p3: mark#(eq(X1,X2)) -> active#(eq(X1,X2)) p4: active#(inf(X)) -> mark#(cons(X,inf(s(X)))) p5: mark#(inf(X)) -> active#(inf(mark(X))) p6: active#(length(cons(X,L))) -> mark#(s(length(L))) p7: mark#(inf(X)) -> mark#(X) p8: mark#(length(X)) -> mark#(X) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36 Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: mark#_A(x1) = x1 length_A(x1) = x1 + 1 active#_A(x1) = x1 mark_A(x1) = x1 eq_A(x1,x2) = 1 s_A(x1) = 0 inf_A(x1) = x1 + 1 cons_A(x1,x2) = x1 + x2 active_A(x1) = x1 |0|_A() = 1 true_A() = 1 false_A() = 1 take_A(x1,x2) = x2 + 1 nil_A() = 1 The next rules are strictly ordered: p6, p7, p8 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(length(X)) -> active#(length(mark(X))) p2: active#(eq(s(X),s(Y))) -> mark#(eq(X,Y)) p3: mark#(eq(X1,X2)) -> active#(eq(X1,X2)) p4: active#(inf(X)) -> mark#(cons(X,inf(s(X)))) p5: mark#(inf(X)) -> active#(inf(mark(X))) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(length(X)) -> active#(length(mark(X))) p2: active#(inf(X)) -> mark#(cons(X,inf(s(X)))) p3: mark#(inf(X)) -> active#(inf(mark(X))) p4: active#(eq(s(X),s(Y))) -> mark#(eq(X,Y)) p5: mark#(eq(X1,X2)) -> active#(eq(X1,X2)) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36 Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: mark#_A(x1) = x1 length_A(x1) = 2 active#_A(x1) = 1 mark_A(x1) = x1 inf_A(x1) = x1 + 1 cons_A(x1,x2) = x2 s_A(x1) = 0 eq_A(x1,x2) = 1 active_A(x1) = x1 |0|_A() = 1 true_A() = 1 false_A() = 1 take_A(x1,x2) = x2 + 1 nil_A() = 0 The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(inf(X)) -> mark#(cons(X,inf(s(X)))) p2: mark#(inf(X)) -> active#(inf(mark(X))) p3: active#(eq(s(X),s(Y))) -> mark#(eq(X,Y)) p4: mark#(eq(X1,X2)) -> active#(eq(X1,X2)) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(inf(X)) -> mark#(cons(X,inf(s(X)))) p2: mark#(eq(X1,X2)) -> active#(eq(X1,X2)) p3: active#(eq(s(X),s(Y))) -> mark#(eq(X,Y)) p4: mark#(inf(X)) -> active#(inf(mark(X))) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36 Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: active#_A(x1) = 2 inf_A(x1) = 3 mark#_A(x1) = x1 cons_A(x1,x2) = 1 s_A(x1) = 1 eq_A(x1,x2) = 2 mark_A(x1) = x1 active_A(x1) = x1 |0|_A() = 1 true_A() = 1 false_A() = 1 take_A(x1,x2) = 1 nil_A() = 1 length_A(x1) = x1 + 1 The next rules are strictly ordered: p1, p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(eq(X1,X2)) -> active#(eq(X1,X2)) p2: active#(eq(s(X),s(Y))) -> mark#(eq(X,Y)) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(eq(X1,X2)) -> active#(eq(X1,X2)) p2: active#(eq(s(X),s(Y))) -> mark#(eq(X,Y)) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The set of usable rules consists of r19, r20, r21, r22 Take the monotone reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: mark#_A(x1) = x1 + 2 eq_A(x1,x2) = x1 + x2 + 1 active#_A(x1) = x1 s_A(x1) = x1 + 1 mark_A(x1) = x1 active_A(x1) = x1 The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(eq(s(X),s(Y))) -> mark#(eq(X,Y)) and R consists of: r1: eq(mark(X1),X2) -> eq(X1,X2) r2: eq(X1,mark(X2)) -> eq(X1,X2) r3: eq(active(X1),X2) -> eq(X1,X2) r4: eq(X1,active(X2)) -> eq(X1,X2) The estimated dependency graph contains the following SCCs: (no SCCs) -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: eq#(mark(X1),X2) -> eq#(X1,X2) p2: eq#(X1,active(X2)) -> eq#(X1,X2) p3: eq#(active(X1),X2) -> eq#(X1,X2) p4: eq#(X1,mark(X2)) -> eq#(X1,X2) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: eq#_A(x1,x2) = x2 mark_A(x1) = x1 + 1 active_A(x1) = x1 The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: eq#(mark(X1),X2) -> eq#(X1,X2) p2: eq#(X1,active(X2)) -> eq#(X1,X2) p3: eq#(active(X1),X2) -> eq#(X1,X2) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: eq#(mark(X1),X2) -> eq#(X1,X2) p2: eq#(active(X1),X2) -> eq#(X1,X2) p3: eq#(X1,active(X2)) -> eq#(X1,X2) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: eq#_A(x1,x2) = x1 + x2 mark_A(x1) = x1 + 1 active_A(x1) = x1 The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: eq#(active(X1),X2) -> eq#(X1,X2) p2: eq#(X1,active(X2)) -> eq#(X1,X2) and R consists of: (no rules) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: eq#(active(X1),X2) -> eq#(X1,X2) p2: eq#(X1,active(X2)) -> eq#(X1,X2) and R consists of: (no rules) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: eq#_A(x1,x2) = x2 active_A(x1) = x1 + 1 The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: eq#(active(X1),X2) -> eq#(X1,X2) and R consists of: (no rules) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: eq#(active(X1),X2) -> eq#(X1,X2) and R consists of: (no rules) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: eq#_A(x1,x2) = x1 active_A(x1) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cons#(mark(X1),X2) -> cons#(X1,X2) p2: cons#(X1,active(X2)) -> cons#(X1,X2) p3: cons#(active(X1),X2) -> cons#(X1,X2) p4: cons#(X1,mark(X2)) -> cons#(X1,X2) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: cons#_A(x1,x2) = x2 mark_A(x1) = x1 + 1 active_A(x1) = x1 The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: cons#(mark(X1),X2) -> cons#(X1,X2) p2: cons#(X1,active(X2)) -> cons#(X1,X2) p3: cons#(active(X1),X2) -> cons#(X1,X2) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cons#(mark(X1),X2) -> cons#(X1,X2) p2: cons#(active(X1),X2) -> cons#(X1,X2) p3: cons#(X1,active(X2)) -> cons#(X1,X2) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: cons#_A(x1,x2) = x1 + x2 mark_A(x1) = x1 + 1 active_A(x1) = x1 The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: cons#(active(X1),X2) -> cons#(X1,X2) p2: cons#(X1,active(X2)) -> cons#(X1,X2) and R consists of: (no rules) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cons#(active(X1),X2) -> cons#(X1,X2) p2: cons#(X1,active(X2)) -> cons#(X1,X2) and R consists of: (no rules) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: cons#_A(x1,x2) = x2 active_A(x1) = x1 + 1 The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: cons#(active(X1),X2) -> cons#(X1,X2) and R consists of: (no rules) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cons#(active(X1),X2) -> cons#(X1,X2) and R consists of: (no rules) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: cons#_A(x1,x2) = x1 active_A(x1) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: inf#(mark(X)) -> inf#(X) p2: inf#(active(X)) -> inf#(X) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: inf#_A(x1) = x1 mark_A(x1) = x1 + 1 active_A(x1) = x1 The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: inf#(active(X)) -> inf#(X) and R consists of: (no rules) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: inf#(active(X)) -> inf#(X) and R consists of: (no rules) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: inf#_A(x1) = x1 active_A(x1) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: s#(mark(X)) -> s#(X) p2: s#(active(X)) -> s#(X) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: s#_A(x1) = x1 mark_A(x1) = x1 + 1 active_A(x1) = x1 The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: s#(active(X)) -> s#(X) and R consists of: (no rules) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: s#(active(X)) -> s#(X) and R consists of: (no rules) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: s#_A(x1) = x1 active_A(x1) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: take#(mark(X1),X2) -> take#(X1,X2) p2: take#(X1,active(X2)) -> take#(X1,X2) p3: take#(active(X1),X2) -> take#(X1,X2) p4: take#(X1,mark(X2)) -> take#(X1,X2) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: take#_A(x1,x2) = x2 mark_A(x1) = x1 + 1 active_A(x1) = x1 The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: take#(mark(X1),X2) -> take#(X1,X2) p2: take#(X1,active(X2)) -> take#(X1,X2) p3: take#(active(X1),X2) -> take#(X1,X2) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: take#(mark(X1),X2) -> take#(X1,X2) p2: take#(active(X1),X2) -> take#(X1,X2) p3: take#(X1,active(X2)) -> take#(X1,X2) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: take#_A(x1,x2) = x1 + x2 mark_A(x1) = x1 + 1 active_A(x1) = x1 The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: take#(active(X1),X2) -> take#(X1,X2) p2: take#(X1,active(X2)) -> take#(X1,X2) and R consists of: (no rules) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: take#(active(X1),X2) -> take#(X1,X2) p2: take#(X1,active(X2)) -> take#(X1,X2) and R consists of: (no rules) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: take#_A(x1,x2) = x2 active_A(x1) = x1 + 1 The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: take#(active(X1),X2) -> take#(X1,X2) and R consists of: (no rules) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: take#(active(X1),X2) -> take#(X1,X2) and R consists of: (no rules) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: take#_A(x1,x2) = x1 active_A(x1) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: length#(mark(X)) -> length#(X) p2: length#(active(X)) -> length#(X) and R consists of: r1: active(eq(|0|(),|0|())) -> mark(true()) r2: active(eq(s(X),s(Y))) -> mark(eq(X,Y)) r3: active(eq(X,Y)) -> mark(false()) r4: active(inf(X)) -> mark(cons(X,inf(s(X)))) r5: active(take(|0|(),X)) -> mark(nil()) r6: active(take(s(X),cons(Y,L))) -> mark(cons(Y,take(X,L))) r7: active(length(nil())) -> mark(|0|()) r8: active(length(cons(X,L))) -> mark(s(length(L))) r9: mark(eq(X1,X2)) -> active(eq(X1,X2)) r10: mark(|0|()) -> active(|0|()) r11: mark(true()) -> active(true()) r12: mark(s(X)) -> active(s(X)) r13: mark(false()) -> active(false()) r14: mark(inf(X)) -> active(inf(mark(X))) r15: mark(cons(X1,X2)) -> active(cons(X1,X2)) r16: mark(take(X1,X2)) -> active(take(mark(X1),mark(X2))) r17: mark(nil()) -> active(nil()) r18: mark(length(X)) -> active(length(mark(X))) r19: eq(mark(X1),X2) -> eq(X1,X2) r20: eq(X1,mark(X2)) -> eq(X1,X2) r21: eq(active(X1),X2) -> eq(X1,X2) r22: eq(X1,active(X2)) -> eq(X1,X2) r23: s(mark(X)) -> s(X) r24: s(active(X)) -> s(X) r25: inf(mark(X)) -> inf(X) r26: inf(active(X)) -> inf(X) r27: cons(mark(X1),X2) -> cons(X1,X2) r28: cons(X1,mark(X2)) -> cons(X1,X2) r29: cons(active(X1),X2) -> cons(X1,X2) r30: cons(X1,active(X2)) -> cons(X1,X2) r31: take(mark(X1),X2) -> take(X1,X2) r32: take(X1,mark(X2)) -> take(X1,X2) r33: take(active(X1),X2) -> take(X1,X2) r34: take(X1,active(X2)) -> take(X1,X2) r35: length(mark(X)) -> length(X) r36: length(active(X)) -> length(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: length#_A(x1) = x1 mark_A(x1) = x1 + 1 active_A(x1) = x1 The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: length#(active(X)) -> length#(X) and R consists of: (no rules) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: length#(active(X)) -> length#(X) and R consists of: (no rules) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: length#_A(x1) = x1 active_A(x1) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.