YES We show the termination of the TRS R: |2nd|(cons(X,n__cons(Y,Z))) -> activate(Y) from(X) -> cons(X,n__from(n__s(X))) cons(X1,X2) -> n__cons(X1,X2) from(X) -> n__from(X) s(X) -> n__s(X) activate(n__cons(X1,X2)) -> cons(activate(X1),X2) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: |2nd|#(cons(X,n__cons(Y,Z))) -> activate#(Y) p2: from#(X) -> cons#(X,n__from(n__s(X))) p3: activate#(n__cons(X1,X2)) -> cons#(activate(X1),X2) p4: activate#(n__cons(X1,X2)) -> activate#(X1) p5: activate#(n__from(X)) -> from#(activate(X)) p6: activate#(n__from(X)) -> activate#(X) p7: activate#(n__s(X)) -> s#(activate(X)) p8: activate#(n__s(X)) -> activate#(X) and R consists of: r1: |2nd|(cons(X,n__cons(Y,Z))) -> activate(Y) r2: from(X) -> cons(X,n__from(n__s(X))) r3: cons(X1,X2) -> n__cons(X1,X2) r4: from(X) -> n__from(X) r5: s(X) -> n__s(X) r6: activate(n__cons(X1,X2)) -> cons(activate(X1),X2) r7: activate(n__from(X)) -> from(activate(X)) r8: activate(n__s(X)) -> s(activate(X)) r9: activate(X) -> X The estimated dependency graph contains the following SCCs: {p4, p6, p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) p2: activate#(n__from(X)) -> activate#(X) p3: activate#(n__cons(X1,X2)) -> activate#(X1) and R consists of: r1: |2nd|(cons(X,n__cons(Y,Z))) -> activate(Y) r2: from(X) -> cons(X,n__from(n__s(X))) r3: cons(X1,X2) -> n__cons(X1,X2) r4: from(X) -> n__from(X) r5: s(X) -> n__s(X) r6: activate(n__cons(X1,X2)) -> cons(activate(X1),X2) r7: activate(n__from(X)) -> from(activate(X)) r8: activate(n__s(X)) -> s(activate(X)) r9: activate(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: activate#_A(x1) = x1 n__s_A(x1) = x1 n__from_A(x1) = x1 + 1 n__cons_A(x1,x2) = x1 The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) p2: activate#(n__cons(X1,X2)) -> activate#(X1) and R consists of: r1: |2nd|(cons(X,n__cons(Y,Z))) -> activate(Y) r2: from(X) -> cons(X,n__from(n__s(X))) r3: cons(X1,X2) -> n__cons(X1,X2) r4: from(X) -> n__from(X) r5: s(X) -> n__s(X) r6: activate(n__cons(X1,X2)) -> cons(activate(X1),X2) r7: activate(n__from(X)) -> from(activate(X)) r8: activate(n__s(X)) -> s(activate(X)) r9: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__s(X)) -> activate#(X) p2: activate#(n__cons(X1,X2)) -> activate#(X1) and R consists of: r1: |2nd|(cons(X,n__cons(Y,Z))) -> activate(Y) r2: from(X) -> cons(X,n__from(n__s(X))) r3: cons(X1,X2) -> n__cons(X1,X2) r4: from(X) -> n__from(X) r5: s(X) -> n__s(X) r6: activate(n__cons(X1,X2)) -> cons(activate(X1),X2) r7: activate(n__from(X)) -> from(activate(X)) r8: activate(n__s(X)) -> s(activate(X)) r9: activate(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: activate#_A(x1) = x1 n__s_A(x1) = x1 + 1 n__cons_A(x1,x2) = x1 The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__cons(X1,X2)) -> activate#(X1) and R consists of: r1: |2nd|(cons(X,n__cons(Y,Z))) -> activate(Y) r2: from(X) -> cons(X,n__from(n__s(X))) r3: cons(X1,X2) -> n__cons(X1,X2) r4: from(X) -> n__from(X) r5: s(X) -> n__s(X) r6: activate(n__cons(X1,X2)) -> cons(activate(X1),X2) r7: activate(n__from(X)) -> from(activate(X)) r8: activate(n__s(X)) -> s(activate(X)) r9: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__cons(X1,X2)) -> activate#(X1) and R consists of: r1: |2nd|(cons(X,n__cons(Y,Z))) -> activate(Y) r2: from(X) -> cons(X,n__from(n__s(X))) r3: cons(X1,X2) -> n__cons(X1,X2) r4: from(X) -> n__from(X) r5: s(X) -> n__s(X) r6: activate(n__cons(X1,X2)) -> cons(activate(X1),X2) r7: activate(n__from(X)) -> from(activate(X)) r8: activate(n__s(X)) -> s(activate(X)) r9: activate(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: activate#_A(x1) = x1 n__cons_A(x1,x2) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.