YES We show the termination of the TRS R: from(X) -> cons(X,n__from(s(X))) |2ndspos|(|0|(),Z) -> rnil() |2ndspos|(s(N),cons(X,n__cons(Y,Z))) -> rcons(posrecip(activate(Y)),|2ndsneg|(N,activate(Z))) |2ndsneg|(|0|(),Z) -> rnil() |2ndsneg|(s(N),cons(X,n__cons(Y,Z))) -> rcons(negrecip(activate(Y)),|2ndspos|(N,activate(Z))) pi(X) -> |2ndspos|(X,from(|0|())) plus(|0|(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) times(|0|(),Y) -> |0|() times(s(X),Y) -> plus(Y,times(X,Y)) square(X) -> times(X,X) from(X) -> n__from(X) cons(X1,X2) -> n__cons(X1,X2) activate(n__from(X)) -> from(X) activate(n__cons(X1,X2)) -> cons(X1,X2) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: from#(X) -> cons#(X,n__from(s(X))) p2: |2ndspos|#(s(N),cons(X,n__cons(Y,Z))) -> activate#(Y) p3: |2ndspos|#(s(N),cons(X,n__cons(Y,Z))) -> |2ndsneg|#(N,activate(Z)) p4: |2ndspos|#(s(N),cons(X,n__cons(Y,Z))) -> activate#(Z) p5: |2ndsneg|#(s(N),cons(X,n__cons(Y,Z))) -> activate#(Y) p6: |2ndsneg|#(s(N),cons(X,n__cons(Y,Z))) -> |2ndspos|#(N,activate(Z)) p7: |2ndsneg|#(s(N),cons(X,n__cons(Y,Z))) -> activate#(Z) p8: pi#(X) -> |2ndspos|#(X,from(|0|())) p9: pi#(X) -> from#(|0|()) p10: plus#(s(X),Y) -> plus#(X,Y) p11: times#(s(X),Y) -> plus#(Y,times(X,Y)) p12: times#(s(X),Y) -> times#(X,Y) p13: square#(X) -> times#(X,X) p14: activate#(n__from(X)) -> from#(X) p15: activate#(n__cons(X1,X2)) -> cons#(X1,X2) and R consists of: r1: from(X) -> cons(X,n__from(s(X))) r2: |2ndspos|(|0|(),Z) -> rnil() r3: |2ndspos|(s(N),cons(X,n__cons(Y,Z))) -> rcons(posrecip(activate(Y)),|2ndsneg|(N,activate(Z))) r4: |2ndsneg|(|0|(),Z) -> rnil() r5: |2ndsneg|(s(N),cons(X,n__cons(Y,Z))) -> rcons(negrecip(activate(Y)),|2ndspos|(N,activate(Z))) r6: pi(X) -> |2ndspos|(X,from(|0|())) r7: plus(|0|(),Y) -> Y r8: plus(s(X),Y) -> s(plus(X,Y)) r9: times(|0|(),Y) -> |0|() r10: times(s(X),Y) -> plus(Y,times(X,Y)) r11: square(X) -> times(X,X) r12: from(X) -> n__from(X) r13: cons(X1,X2) -> n__cons(X1,X2) r14: activate(n__from(X)) -> from(X) r15: activate(n__cons(X1,X2)) -> cons(X1,X2) r16: activate(X) -> X The estimated dependency graph contains the following SCCs: {p3, p6} {p12} {p10} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: |2ndsneg|#(s(N),cons(X,n__cons(Y,Z))) -> |2ndspos|#(N,activate(Z)) p2: |2ndspos|#(s(N),cons(X,n__cons(Y,Z))) -> |2ndsneg|#(N,activate(Z)) and R consists of: r1: from(X) -> cons(X,n__from(s(X))) r2: |2ndspos|(|0|(),Z) -> rnil() r3: |2ndspos|(s(N),cons(X,n__cons(Y,Z))) -> rcons(posrecip(activate(Y)),|2ndsneg|(N,activate(Z))) r4: |2ndsneg|(|0|(),Z) -> rnil() r5: |2ndsneg|(s(N),cons(X,n__cons(Y,Z))) -> rcons(negrecip(activate(Y)),|2ndspos|(N,activate(Z))) r6: pi(X) -> |2ndspos|(X,from(|0|())) r7: plus(|0|(),Y) -> Y r8: plus(s(X),Y) -> s(plus(X,Y)) r9: times(|0|(),Y) -> |0|() r10: times(s(X),Y) -> plus(Y,times(X,Y)) r11: square(X) -> times(X,X) r12: from(X) -> n__from(X) r13: cons(X1,X2) -> n__cons(X1,X2) r14: activate(n__from(X)) -> from(X) r15: activate(n__cons(X1,X2)) -> cons(X1,X2) r16: activate(X) -> X The set of usable rules consists of r1, r12, r13, r14, r15, r16 Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: |2ndsneg|#_A(x1,x2) = x1 s_A(x1) = x1 + 1 cons_A(x1,x2) = x2 + 1 n__cons_A(x1,x2) = x2 + 1 |2ndspos|#_A(x1,x2) = x1 activate_A(x1) = x1 + 2 from_A(x1) = x1 + 2 n__from_A(x1) = x1 The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: times#(s(X),Y) -> times#(X,Y) and R consists of: r1: from(X) -> cons(X,n__from(s(X))) r2: |2ndspos|(|0|(),Z) -> rnil() r3: |2ndspos|(s(N),cons(X,n__cons(Y,Z))) -> rcons(posrecip(activate(Y)),|2ndsneg|(N,activate(Z))) r4: |2ndsneg|(|0|(),Z) -> rnil() r5: |2ndsneg|(s(N),cons(X,n__cons(Y,Z))) -> rcons(negrecip(activate(Y)),|2ndspos|(N,activate(Z))) r6: pi(X) -> |2ndspos|(X,from(|0|())) r7: plus(|0|(),Y) -> Y r8: plus(s(X),Y) -> s(plus(X,Y)) r9: times(|0|(),Y) -> |0|() r10: times(s(X),Y) -> plus(Y,times(X,Y)) r11: square(X) -> times(X,X) r12: from(X) -> n__from(X) r13: cons(X1,X2) -> n__cons(X1,X2) r14: activate(n__from(X)) -> from(X) r15: activate(n__cons(X1,X2)) -> cons(X1,X2) r16: activate(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: times#_A(x1,x2) = x1 s_A(x1) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: plus#(s(X),Y) -> plus#(X,Y) and R consists of: r1: from(X) -> cons(X,n__from(s(X))) r2: |2ndspos|(|0|(),Z) -> rnil() r3: |2ndspos|(s(N),cons(X,n__cons(Y,Z))) -> rcons(posrecip(activate(Y)),|2ndsneg|(N,activate(Z))) r4: |2ndsneg|(|0|(),Z) -> rnil() r5: |2ndsneg|(s(N),cons(X,n__cons(Y,Z))) -> rcons(negrecip(activate(Y)),|2ndspos|(N,activate(Z))) r6: pi(X) -> |2ndspos|(X,from(|0|())) r7: plus(|0|(),Y) -> Y r8: plus(s(X),Y) -> s(plus(X,Y)) r9: times(|0|(),Y) -> |0|() r10: times(s(X),Y) -> plus(Y,times(X,Y)) r11: square(X) -> times(X,X) r12: from(X) -> n__from(X) r13: cons(X1,X2) -> n__cons(X1,X2) r14: activate(n__from(X)) -> from(X) r15: activate(n__cons(X1,X2)) -> cons(X1,X2) r16: activate(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: plus#_A(x1,x2) = x1 s_A(x1) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.