YES We show the termination of the TRS R: *(x,*(y,z)) -> *(otimes(x,y),z) *(|1|(),y) -> y *(+(x,y),z) -> oplus(*(x,z),*(y,z)) *(x,oplus(y,z)) -> oplus(*(x,y),*(x,z)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: *#(x,*(y,z)) -> *#(otimes(x,y),z) p2: *#(+(x,y),z) -> *#(x,z) p3: *#(+(x,y),z) -> *#(y,z) p4: *#(x,oplus(y,z)) -> *#(x,y) p5: *#(x,oplus(y,z)) -> *#(x,z) and R consists of: r1: *(x,*(y,z)) -> *(otimes(x,y),z) r2: *(|1|(),y) -> y r3: *(+(x,y),z) -> oplus(*(x,z),*(y,z)) r4: *(x,oplus(y,z)) -> oplus(*(x,y),*(x,z)) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: *#(x,*(y,z)) -> *#(otimes(x,y),z) p2: *#(x,oplus(y,z)) -> *#(x,z) p3: *#(x,oplus(y,z)) -> *#(x,y) p4: *#(+(x,y),z) -> *#(y,z) p5: *#(+(x,y),z) -> *#(x,z) and R consists of: r1: *(x,*(y,z)) -> *(otimes(x,y),z) r2: *(|1|(),y) -> y r3: *(+(x,y),z) -> oplus(*(x,z),*(y,z)) r4: *(x,oplus(y,z)) -> oplus(*(x,y),*(x,z)) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: *#_A(x1,x2) = x1 + x2 *_A(x1,x2) = x1 + x2 + 2 otimes_A(x1,x2) = x1 + x2 + 1 oplus_A(x1,x2) = x1 + x2 +_A(x1,x2) = x1 + x2 The next rules are strictly ordered: p1 r1, r2, r3, r4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: *#(x,oplus(y,z)) -> *#(x,z) p2: *#(x,oplus(y,z)) -> *#(x,y) p3: *#(+(x,y),z) -> *#(y,z) p4: *#(+(x,y),z) -> *#(x,z) and R consists of: (no rules) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: *#(x,oplus(y,z)) -> *#(x,z) p2: *#(+(x,y),z) -> *#(x,z) p3: *#(+(x,y),z) -> *#(y,z) p4: *#(x,oplus(y,z)) -> *#(x,y) and R consists of: (no rules) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: *#_A(x1,x2) = x2 oplus_A(x1,x2) = x1 + x2 + 1 +_A(x1,x2) = x1 + x2 + 1 The next rules are strictly ordered: p1, p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: *#(+(x,y),z) -> *#(x,z) p2: *#(+(x,y),z) -> *#(y,z) and R consists of: (no rules) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: *#(+(x,y),z) -> *#(x,z) p2: *#(+(x,y),z) -> *#(y,z) and R consists of: (no rules) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: *#_A(x1,x2) = x1 +_A(x1,x2) = x1 + x2 + 1 The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.