YES We show the termination of the TRS R: plus(|0|(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) min(X,|0|()) -> X min(s(X),s(Y)) -> min(X,Y) min(min(X,Y),Z()) -> min(X,plus(Y,Z())) quot(|0|(),s(Y)) -> |0|() quot(s(X),s(Y)) -> s(quot(min(X,Y),s(Y))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: plus#(s(X),Y) -> plus#(X,Y) p2: min#(s(X),s(Y)) -> min#(X,Y) p3: min#(min(X,Y),Z()) -> min#(X,plus(Y,Z())) p4: min#(min(X,Y),Z()) -> plus#(Y,Z()) p5: quot#(s(X),s(Y)) -> quot#(min(X,Y),s(Y)) p6: quot#(s(X),s(Y)) -> min#(X,Y) and R consists of: r1: plus(|0|(),Y) -> Y r2: plus(s(X),Y) -> s(plus(X,Y)) r3: min(X,|0|()) -> X r4: min(s(X),s(Y)) -> min(X,Y) r5: min(min(X,Y),Z()) -> min(X,plus(Y,Z())) r6: quot(|0|(),s(Y)) -> |0|() r7: quot(s(X),s(Y)) -> s(quot(min(X,Y),s(Y))) The estimated dependency graph contains the following SCCs: {p5} {p2, p3} {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: quot#(s(X),s(Y)) -> quot#(min(X,Y),s(Y)) and R consists of: r1: plus(|0|(),Y) -> Y r2: plus(s(X),Y) -> s(plus(X,Y)) r3: min(X,|0|()) -> X r4: min(s(X),s(Y)) -> min(X,Y) r5: min(min(X,Y),Z()) -> min(X,plus(Y,Z())) r6: quot(|0|(),s(Y)) -> |0|() r7: quot(s(X),s(Y)) -> s(quot(min(X,Y),s(Y))) The set of usable rules consists of r1, r2, r3, r4, r5 Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: quot#_A(x1,x2) = x1 s_A(x1) = x1 + 1 min_A(x1,x2) = x1 plus_A(x1,x2) = x1 + x2 |0|_A() = 0 Z_A() = 0 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: min#(min(X,Y),Z()) -> min#(X,plus(Y,Z())) p2: min#(s(X),s(Y)) -> min#(X,Y) and R consists of: r1: plus(|0|(),Y) -> Y r2: plus(s(X),Y) -> s(plus(X,Y)) r3: min(X,|0|()) -> X r4: min(s(X),s(Y)) -> min(X,Y) r5: min(min(X,Y),Z()) -> min(X,plus(Y,Z())) r6: quot(|0|(),s(Y)) -> |0|() r7: quot(s(X),s(Y)) -> s(quot(min(X,Y),s(Y))) The set of usable rules consists of r1, r2 Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: min#_A(x1,x2) = x1 min_A(x1,x2) = x1 + x2 + 1 Z_A() = 1 plus_A(x1,x2) = x1 + x2 + 1 s_A(x1) = x1 + 1 |0|_A() = 1 The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: plus#(s(X),Y) -> plus#(X,Y) and R consists of: r1: plus(|0|(),Y) -> Y r2: plus(s(X),Y) -> s(plus(X,Y)) r3: min(X,|0|()) -> X r4: min(s(X),s(Y)) -> min(X,Y) r5: min(min(X,Y),Z()) -> min(X,plus(Y,Z())) r6: quot(|0|(),s(Y)) -> |0|() r7: quot(s(X),s(Y)) -> s(quot(min(X,Y),s(Y))) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: plus#_A(x1,x2) = x1 s_A(x1) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.