YES We show the termination of the TRS R: le(|0|(),Y) -> true() le(s(X),|0|()) -> false() le(s(X),s(Y)) -> le(X,Y) app(nil(),Y) -> Y app(cons(N,L),Y) -> cons(N,app(L,Y)) low(N,nil()) -> nil() low(N,cons(M,L)) -> iflow(le(M,N),N,cons(M,L)) iflow(true(),N,cons(M,L)) -> cons(M,low(N,L)) iflow(false(),N,cons(M,L)) -> low(N,L) high(N,nil()) -> nil() high(N,cons(M,L)) -> ifhigh(le(M,N),N,cons(M,L)) ifhigh(true(),N,cons(M,L)) -> high(N,L) ifhigh(false(),N,cons(M,L)) -> cons(M,high(N,L)) quicksort(nil()) -> nil() quicksort(cons(N,L)) -> app(quicksort(low(N,L)),cons(N,quicksort(high(N,L)))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: le#(s(X),s(Y)) -> le#(X,Y) p2: app#(cons(N,L),Y) -> app#(L,Y) p3: low#(N,cons(M,L)) -> iflow#(le(M,N),N,cons(M,L)) p4: low#(N,cons(M,L)) -> le#(M,N) p5: iflow#(true(),N,cons(M,L)) -> low#(N,L) p6: iflow#(false(),N,cons(M,L)) -> low#(N,L) p7: high#(N,cons(M,L)) -> ifhigh#(le(M,N),N,cons(M,L)) p8: high#(N,cons(M,L)) -> le#(M,N) p9: ifhigh#(true(),N,cons(M,L)) -> high#(N,L) p10: ifhigh#(false(),N,cons(M,L)) -> high#(N,L) p11: quicksort#(cons(N,L)) -> app#(quicksort(low(N,L)),cons(N,quicksort(high(N,L)))) p12: quicksort#(cons(N,L)) -> quicksort#(low(N,L)) p13: quicksort#(cons(N,L)) -> low#(N,L) p14: quicksort#(cons(N,L)) -> quicksort#(high(N,L)) p15: quicksort#(cons(N,L)) -> high#(N,L) and R consists of: r1: le(|0|(),Y) -> true() r2: le(s(X),|0|()) -> false() r3: le(s(X),s(Y)) -> le(X,Y) r4: app(nil(),Y) -> Y r5: app(cons(N,L),Y) -> cons(N,app(L,Y)) r6: low(N,nil()) -> nil() r7: low(N,cons(M,L)) -> iflow(le(M,N),N,cons(M,L)) r8: iflow(true(),N,cons(M,L)) -> cons(M,low(N,L)) r9: iflow(false(),N,cons(M,L)) -> low(N,L) r10: high(N,nil()) -> nil() r11: high(N,cons(M,L)) -> ifhigh(le(M,N),N,cons(M,L)) r12: ifhigh(true(),N,cons(M,L)) -> high(N,L) r13: ifhigh(false(),N,cons(M,L)) -> cons(M,high(N,L)) r14: quicksort(nil()) -> nil() r15: quicksort(cons(N,L)) -> app(quicksort(low(N,L)),cons(N,quicksort(high(N,L)))) The estimated dependency graph contains the following SCCs: {p12, p14} {p7, p9, p10} {p3, p5, p6} {p1} {p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: quicksort#(cons(N,L)) -> quicksort#(high(N,L)) p2: quicksort#(cons(N,L)) -> quicksort#(low(N,L)) and R consists of: r1: le(|0|(),Y) -> true() r2: le(s(X),|0|()) -> false() r3: le(s(X),s(Y)) -> le(X,Y) r4: app(nil(),Y) -> Y r5: app(cons(N,L),Y) -> cons(N,app(L,Y)) r6: low(N,nil()) -> nil() r7: low(N,cons(M,L)) -> iflow(le(M,N),N,cons(M,L)) r8: iflow(true(),N,cons(M,L)) -> cons(M,low(N,L)) r9: iflow(false(),N,cons(M,L)) -> low(N,L) r10: high(N,nil()) -> nil() r11: high(N,cons(M,L)) -> ifhigh(le(M,N),N,cons(M,L)) r12: ifhigh(true(),N,cons(M,L)) -> high(N,L) r13: ifhigh(false(),N,cons(M,L)) -> cons(M,high(N,L)) r14: quicksort(nil()) -> nil() r15: quicksort(cons(N,L)) -> app(quicksort(low(N,L)),cons(N,quicksort(high(N,L)))) The set of usable rules consists of r1, r2, r3, r6, r7, r8, r9, r10, r11, r12, r13 Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: quicksort#_A(x1) = x1 cons_A(x1,x2) = x1 + x2 + 2 high_A(x1,x2) = x1 + x2 + 2 low_A(x1,x2) = x1 + x2 + 1 le_A(x1,x2) = 1 |0|_A() = 1 true_A() = 1 s_A(x1) = x1 + 1 false_A() = 1 iflow_A(x1,x2,x3) = x2 + x3 + 1 ifhigh_A(x1,x2,x3) = x2 + x3 + 2 nil_A() = 1 The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: quicksort#(cons(N,L)) -> quicksort#(high(N,L)) and R consists of: r1: le(|0|(),Y) -> true() r2: le(s(X),|0|()) -> false() r3: le(s(X),s(Y)) -> le(X,Y) r4: app(nil(),Y) -> Y r5: app(cons(N,L),Y) -> cons(N,app(L,Y)) r6: low(N,nil()) -> nil() r7: low(N,cons(M,L)) -> iflow(le(M,N),N,cons(M,L)) r8: iflow(true(),N,cons(M,L)) -> cons(M,low(N,L)) r9: iflow(false(),N,cons(M,L)) -> low(N,L) r10: high(N,nil()) -> nil() r11: high(N,cons(M,L)) -> ifhigh(le(M,N),N,cons(M,L)) r12: ifhigh(true(),N,cons(M,L)) -> high(N,L) r13: ifhigh(false(),N,cons(M,L)) -> cons(M,high(N,L)) r14: quicksort(nil()) -> nil() r15: quicksort(cons(N,L)) -> app(quicksort(low(N,L)),cons(N,quicksort(high(N,L)))) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: quicksort#(cons(N,L)) -> quicksort#(high(N,L)) and R consists of: r1: le(|0|(),Y) -> true() r2: le(s(X),|0|()) -> false() r3: le(s(X),s(Y)) -> le(X,Y) r4: app(nil(),Y) -> Y r5: app(cons(N,L),Y) -> cons(N,app(L,Y)) r6: low(N,nil()) -> nil() r7: low(N,cons(M,L)) -> iflow(le(M,N),N,cons(M,L)) r8: iflow(true(),N,cons(M,L)) -> cons(M,low(N,L)) r9: iflow(false(),N,cons(M,L)) -> low(N,L) r10: high(N,nil()) -> nil() r11: high(N,cons(M,L)) -> ifhigh(le(M,N),N,cons(M,L)) r12: ifhigh(true(),N,cons(M,L)) -> high(N,L) r13: ifhigh(false(),N,cons(M,L)) -> cons(M,high(N,L)) r14: quicksort(nil()) -> nil() r15: quicksort(cons(N,L)) -> app(quicksort(low(N,L)),cons(N,quicksort(high(N,L)))) The set of usable rules consists of r1, r2, r3, r10, r11, r12, r13 Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: quicksort#_A(x1) = x1 cons_A(x1,x2) = x2 + 2 high_A(x1,x2) = x2 + 1 le_A(x1,x2) = 1 |0|_A() = 1 true_A() = 1 s_A(x1) = x1 + 1 false_A() = 1 ifhigh_A(x1,x2,x3) = x3 + 1 nil_A() = 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ifhigh#(false(),N,cons(M,L)) -> high#(N,L) p2: high#(N,cons(M,L)) -> ifhigh#(le(M,N),N,cons(M,L)) p3: ifhigh#(true(),N,cons(M,L)) -> high#(N,L) and R consists of: r1: le(|0|(),Y) -> true() r2: le(s(X),|0|()) -> false() r3: le(s(X),s(Y)) -> le(X,Y) r4: app(nil(),Y) -> Y r5: app(cons(N,L),Y) -> cons(N,app(L,Y)) r6: low(N,nil()) -> nil() r7: low(N,cons(M,L)) -> iflow(le(M,N),N,cons(M,L)) r8: iflow(true(),N,cons(M,L)) -> cons(M,low(N,L)) r9: iflow(false(),N,cons(M,L)) -> low(N,L) r10: high(N,nil()) -> nil() r11: high(N,cons(M,L)) -> ifhigh(le(M,N),N,cons(M,L)) r12: ifhigh(true(),N,cons(M,L)) -> high(N,L) r13: ifhigh(false(),N,cons(M,L)) -> cons(M,high(N,L)) r14: quicksort(nil()) -> nil() r15: quicksort(cons(N,L)) -> app(quicksort(low(N,L)),cons(N,quicksort(high(N,L)))) The set of usable rules consists of r1, r2, r3 Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: ifhigh#_A(x1,x2,x3) = x3 false_A() = 1 cons_A(x1,x2) = x1 + x2 + 1 high#_A(x1,x2) = x2 le_A(x1,x2) = x1 + 1 true_A() = 1 |0|_A() = 1 s_A(x1) = x1 + 1 The next rules are strictly ordered: p1, p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: high#(N,cons(M,L)) -> ifhigh#(le(M,N),N,cons(M,L)) and R consists of: r1: le(|0|(),Y) -> true() r2: le(s(X),|0|()) -> false() r3: le(s(X),s(Y)) -> le(X,Y) r4: app(nil(),Y) -> Y r5: app(cons(N,L),Y) -> cons(N,app(L,Y)) r6: low(N,nil()) -> nil() r7: low(N,cons(M,L)) -> iflow(le(M,N),N,cons(M,L)) r8: iflow(true(),N,cons(M,L)) -> cons(M,low(N,L)) r9: iflow(false(),N,cons(M,L)) -> low(N,L) r10: high(N,nil()) -> nil() r11: high(N,cons(M,L)) -> ifhigh(le(M,N),N,cons(M,L)) r12: ifhigh(true(),N,cons(M,L)) -> high(N,L) r13: ifhigh(false(),N,cons(M,L)) -> cons(M,high(N,L)) r14: quicksort(nil()) -> nil() r15: quicksort(cons(N,L)) -> app(quicksort(low(N,L)),cons(N,quicksort(high(N,L)))) The estimated dependency graph contains the following SCCs: (no SCCs) -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: iflow#(false(),N,cons(M,L)) -> low#(N,L) p2: low#(N,cons(M,L)) -> iflow#(le(M,N),N,cons(M,L)) p3: iflow#(true(),N,cons(M,L)) -> low#(N,L) and R consists of: r1: le(|0|(),Y) -> true() r2: le(s(X),|0|()) -> false() r3: le(s(X),s(Y)) -> le(X,Y) r4: app(nil(),Y) -> Y r5: app(cons(N,L),Y) -> cons(N,app(L,Y)) r6: low(N,nil()) -> nil() r7: low(N,cons(M,L)) -> iflow(le(M,N),N,cons(M,L)) r8: iflow(true(),N,cons(M,L)) -> cons(M,low(N,L)) r9: iflow(false(),N,cons(M,L)) -> low(N,L) r10: high(N,nil()) -> nil() r11: high(N,cons(M,L)) -> ifhigh(le(M,N),N,cons(M,L)) r12: ifhigh(true(),N,cons(M,L)) -> high(N,L) r13: ifhigh(false(),N,cons(M,L)) -> cons(M,high(N,L)) r14: quicksort(nil()) -> nil() r15: quicksort(cons(N,L)) -> app(quicksort(low(N,L)),cons(N,quicksort(high(N,L)))) The set of usable rules consists of r1, r2, r3 Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: iflow#_A(x1,x2,x3) = x3 false_A() = 1 cons_A(x1,x2) = x1 + x2 + 1 low#_A(x1,x2) = x2 le_A(x1,x2) = x1 + 1 true_A() = 1 |0|_A() = 1 s_A(x1) = x1 + 1 The next rules are strictly ordered: p1, p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: low#(N,cons(M,L)) -> iflow#(le(M,N),N,cons(M,L)) and R consists of: r1: le(|0|(),Y) -> true() r2: le(s(X),|0|()) -> false() r3: le(s(X),s(Y)) -> le(X,Y) r4: app(nil(),Y) -> Y r5: app(cons(N,L),Y) -> cons(N,app(L,Y)) r6: low(N,nil()) -> nil() r7: low(N,cons(M,L)) -> iflow(le(M,N),N,cons(M,L)) r8: iflow(true(),N,cons(M,L)) -> cons(M,low(N,L)) r9: iflow(false(),N,cons(M,L)) -> low(N,L) r10: high(N,nil()) -> nil() r11: high(N,cons(M,L)) -> ifhigh(le(M,N),N,cons(M,L)) r12: ifhigh(true(),N,cons(M,L)) -> high(N,L) r13: ifhigh(false(),N,cons(M,L)) -> cons(M,high(N,L)) r14: quicksort(nil()) -> nil() r15: quicksort(cons(N,L)) -> app(quicksort(low(N,L)),cons(N,quicksort(high(N,L)))) The estimated dependency graph contains the following SCCs: (no SCCs) -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: le#(s(X),s(Y)) -> le#(X,Y) and R consists of: r1: le(|0|(),Y) -> true() r2: le(s(X),|0|()) -> false() r3: le(s(X),s(Y)) -> le(X,Y) r4: app(nil(),Y) -> Y r5: app(cons(N,L),Y) -> cons(N,app(L,Y)) r6: low(N,nil()) -> nil() r7: low(N,cons(M,L)) -> iflow(le(M,N),N,cons(M,L)) r8: iflow(true(),N,cons(M,L)) -> cons(M,low(N,L)) r9: iflow(false(),N,cons(M,L)) -> low(N,L) r10: high(N,nil()) -> nil() r11: high(N,cons(M,L)) -> ifhigh(le(M,N),N,cons(M,L)) r12: ifhigh(true(),N,cons(M,L)) -> high(N,L) r13: ifhigh(false(),N,cons(M,L)) -> cons(M,high(N,L)) r14: quicksort(nil()) -> nil() r15: quicksort(cons(N,L)) -> app(quicksort(low(N,L)),cons(N,quicksort(high(N,L)))) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: le#_A(x1,x2) = x1 s_A(x1) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: app#(cons(N,L),Y) -> app#(L,Y) and R consists of: r1: le(|0|(),Y) -> true() r2: le(s(X),|0|()) -> false() r3: le(s(X),s(Y)) -> le(X,Y) r4: app(nil(),Y) -> Y r5: app(cons(N,L),Y) -> cons(N,app(L,Y)) r6: low(N,nil()) -> nil() r7: low(N,cons(M,L)) -> iflow(le(M,N),N,cons(M,L)) r8: iflow(true(),N,cons(M,L)) -> cons(M,low(N,L)) r9: iflow(false(),N,cons(M,L)) -> low(N,L) r10: high(N,nil()) -> nil() r11: high(N,cons(M,L)) -> ifhigh(le(M,N),N,cons(M,L)) r12: ifhigh(true(),N,cons(M,L)) -> high(N,L) r13: ifhigh(false(),N,cons(M,L)) -> cons(M,high(N,L)) r14: quicksort(nil()) -> nil() r15: quicksort(cons(N,L)) -> app(quicksort(low(N,L)),cons(N,quicksort(high(N,L)))) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: app#_A(x1,x2) = x1 cons_A(x1,x2) = x2 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.