YES We show the termination of the TRS R: |sort|(nil()) -> nil() |sort|(cons(x,y)) -> insert(x,|sort|(y)) insert(x,nil()) -> cons(x,nil()) insert(x,cons(v,w)) -> choose(x,cons(v,w),x,v) choose(x,cons(v,w),y,|0|()) -> cons(x,cons(v,w)) choose(x,cons(v,w),|0|(),s(z)) -> cons(v,insert(x,w)) choose(x,cons(v,w),s(y),s(z)) -> choose(x,cons(v,w),y,z) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: |sort|#(cons(x,y)) -> insert#(x,|sort|(y)) p2: |sort|#(cons(x,y)) -> |sort|#(y) p3: insert#(x,cons(v,w)) -> choose#(x,cons(v,w),x,v) p4: choose#(x,cons(v,w),|0|(),s(z)) -> insert#(x,w) p5: choose#(x,cons(v,w),s(y),s(z)) -> choose#(x,cons(v,w),y,z) and R consists of: r1: |sort|(nil()) -> nil() r2: |sort|(cons(x,y)) -> insert(x,|sort|(y)) r3: insert(x,nil()) -> cons(x,nil()) r4: insert(x,cons(v,w)) -> choose(x,cons(v,w),x,v) r5: choose(x,cons(v,w),y,|0|()) -> cons(x,cons(v,w)) r6: choose(x,cons(v,w),|0|(),s(z)) -> cons(v,insert(x,w)) r7: choose(x,cons(v,w),s(y),s(z)) -> choose(x,cons(v,w),y,z) The estimated dependency graph contains the following SCCs: {p2} {p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: |sort|#(cons(x,y)) -> |sort|#(y) and R consists of: r1: |sort|(nil()) -> nil() r2: |sort|(cons(x,y)) -> insert(x,|sort|(y)) r3: insert(x,nil()) -> cons(x,nil()) r4: insert(x,cons(v,w)) -> choose(x,cons(v,w),x,v) r5: choose(x,cons(v,w),y,|0|()) -> cons(x,cons(v,w)) r6: choose(x,cons(v,w),|0|(),s(z)) -> cons(v,insert(x,w)) r7: choose(x,cons(v,w),s(y),s(z)) -> choose(x,cons(v,w),y,z) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: |sort|#_A(x1) = x1 cons_A(x1,x2) = x2 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: insert#(x,cons(v,w)) -> choose#(x,cons(v,w),x,v) p2: choose#(x,cons(v,w),s(y),s(z)) -> choose#(x,cons(v,w),y,z) p3: choose#(x,cons(v,w),|0|(),s(z)) -> insert#(x,w) and R consists of: r1: |sort|(nil()) -> nil() r2: |sort|(cons(x,y)) -> insert(x,|sort|(y)) r3: insert(x,nil()) -> cons(x,nil()) r4: insert(x,cons(v,w)) -> choose(x,cons(v,w),x,v) r5: choose(x,cons(v,w),y,|0|()) -> cons(x,cons(v,w)) r6: choose(x,cons(v,w),|0|(),s(z)) -> cons(v,insert(x,w)) r7: choose(x,cons(v,w),s(y),s(z)) -> choose(x,cons(v,w),y,z) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: insert#_A(x1,x2) = x2 cons_A(x1,x2) = x2 + 1 choose#_A(x1,x2,x3,x4) = x2 s_A(x1) = x1 + 1 |0|_A() = 1 The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: insert#(x,cons(v,w)) -> choose#(x,cons(v,w),x,v) p2: choose#(x,cons(v,w),s(y),s(z)) -> choose#(x,cons(v,w),y,z) and R consists of: r1: |sort|(nil()) -> nil() r2: |sort|(cons(x,y)) -> insert(x,|sort|(y)) r3: insert(x,nil()) -> cons(x,nil()) r4: insert(x,cons(v,w)) -> choose(x,cons(v,w),x,v) r5: choose(x,cons(v,w),y,|0|()) -> cons(x,cons(v,w)) r6: choose(x,cons(v,w),|0|(),s(z)) -> cons(v,insert(x,w)) r7: choose(x,cons(v,w),s(y),s(z)) -> choose(x,cons(v,w),y,z) The estimated dependency graph contains the following SCCs: {p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: choose#(x,cons(v,w),s(y),s(z)) -> choose#(x,cons(v,w),y,z) and R consists of: r1: |sort|(nil()) -> nil() r2: |sort|(cons(x,y)) -> insert(x,|sort|(y)) r3: insert(x,nil()) -> cons(x,nil()) r4: insert(x,cons(v,w)) -> choose(x,cons(v,w),x,v) r5: choose(x,cons(v,w),y,|0|()) -> cons(x,cons(v,w)) r6: choose(x,cons(v,w),|0|(),s(z)) -> cons(v,insert(x,w)) r7: choose(x,cons(v,w),s(y),s(z)) -> choose(x,cons(v,w),y,z) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: choose#_A(x1,x2,x3,x4) = x3 + x4 cons_A(x1,x2) = 0 s_A(x1) = x1 + 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.