YES We show the termination of the TRS R: app(app(plus(),|0|()),y) -> y app(app(plus(),app(s(),x)),y) -> app(s(),app(app(plus(),x),y)) app(app(times(),|0|()),y) -> |0|() app(app(times(),app(s(),x)),y) -> app(app(plus(),app(app(times(),x),y)),y) app(app(map(),f),nil()) -> nil() app(app(map(),f),app(app(cons(),x),xs)) -> app(app(cons(),app(f,x)),app(app(map(),f),xs)) inc() -> app(map(),app(plus(),app(s(),|0|()))) double() -> app(map(),app(times(),app(s(),app(s(),|0|())))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(plus(),app(s(),x)),y) -> app#(s(),app(app(plus(),x),y)) p2: app#(app(plus(),app(s(),x)),y) -> app#(app(plus(),x),y) p3: app#(app(plus(),app(s(),x)),y) -> app#(plus(),x) p4: app#(app(times(),app(s(),x)),y) -> app#(app(plus(),app(app(times(),x),y)),y) p5: app#(app(times(),app(s(),x)),y) -> app#(plus(),app(app(times(),x),y)) p6: app#(app(times(),app(s(),x)),y) -> app#(app(times(),x),y) p7: app#(app(times(),app(s(),x)),y) -> app#(times(),x) p8: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(app(cons(),app(f,x)),app(app(map(),f),xs)) p9: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(cons(),app(f,x)) p10: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(f,x) p11: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(app(map(),f),xs) p12: inc#() -> app#(map(),app(plus(),app(s(),|0|()))) p13: inc#() -> app#(plus(),app(s(),|0|())) p14: inc#() -> app#(s(),|0|()) p15: double#() -> app#(map(),app(times(),app(s(),app(s(),|0|())))) p16: double#() -> app#(times(),app(s(),app(s(),|0|()))) p17: double#() -> app#(s(),app(s(),|0|())) p18: double#() -> app#(s(),|0|()) and R consists of: r1: app(app(plus(),|0|()),y) -> y r2: app(app(plus(),app(s(),x)),y) -> app(s(),app(app(plus(),x),y)) r3: app(app(times(),|0|()),y) -> |0|() r4: app(app(times(),app(s(),x)),y) -> app(app(plus(),app(app(times(),x),y)),y) r5: app(app(map(),f),nil()) -> nil() r6: app(app(map(),f),app(app(cons(),x),xs)) -> app(app(cons(),app(f,x)),app(app(map(),f),xs)) r7: inc() -> app(map(),app(plus(),app(s(),|0|()))) r8: double() -> app(map(),app(times(),app(s(),app(s(),|0|())))) The estimated dependency graph contains the following SCCs: {p10, p11} {p6} {p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(f,x) p2: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(app(map(),f),xs) and R consists of: r1: app(app(plus(),|0|()),y) -> y r2: app(app(plus(),app(s(),x)),y) -> app(s(),app(app(plus(),x),y)) r3: app(app(times(),|0|()),y) -> |0|() r4: app(app(times(),app(s(),x)),y) -> app(app(plus(),app(app(times(),x),y)),y) r5: app(app(map(),f),nil()) -> nil() r6: app(app(map(),f),app(app(cons(),x),xs)) -> app(app(cons(),app(f,x)),app(app(map(),f),xs)) r7: inc() -> app(map(),app(plus(),app(s(),|0|()))) r8: double() -> app(map(),app(times(),app(s(),app(s(),|0|())))) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: app#_A(x1,x2) = x1 app_A(x1,x2) = x1 + x2 map_A() = 1 cons_A() = 1 The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(app(map(),f),xs) and R consists of: r1: app(app(plus(),|0|()),y) -> y r2: app(app(plus(),app(s(),x)),y) -> app(s(),app(app(plus(),x),y)) r3: app(app(times(),|0|()),y) -> |0|() r4: app(app(times(),app(s(),x)),y) -> app(app(plus(),app(app(times(),x),y)),y) r5: app(app(map(),f),nil()) -> nil() r6: app(app(map(),f),app(app(cons(),x),xs)) -> app(app(cons(),app(f,x)),app(app(map(),f),xs)) r7: inc() -> app(map(),app(plus(),app(s(),|0|()))) r8: double() -> app(map(),app(times(),app(s(),app(s(),|0|())))) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(app(map(),f),xs) and R consists of: r1: app(app(plus(),|0|()),y) -> y r2: app(app(plus(),app(s(),x)),y) -> app(s(),app(app(plus(),x),y)) r3: app(app(times(),|0|()),y) -> |0|() r4: app(app(times(),app(s(),x)),y) -> app(app(plus(),app(app(times(),x),y)),y) r5: app(app(map(),f),nil()) -> nil() r6: app(app(map(),f),app(app(cons(),x),xs)) -> app(app(cons(),app(f,x)),app(app(map(),f),xs)) r7: inc() -> app(map(),app(plus(),app(s(),|0|()))) r8: double() -> app(map(),app(times(),app(s(),app(s(),|0|())))) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: app#_A(x1,x2) = x2 app_A(x1,x2) = x1 + x2 + 1 map_A() = 0 cons_A() = 0 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(times(),app(s(),x)),y) -> app#(app(times(),x),y) and R consists of: r1: app(app(plus(),|0|()),y) -> y r2: app(app(plus(),app(s(),x)),y) -> app(s(),app(app(plus(),x),y)) r3: app(app(times(),|0|()),y) -> |0|() r4: app(app(times(),app(s(),x)),y) -> app(app(plus(),app(app(times(),x),y)),y) r5: app(app(map(),f),nil()) -> nil() r6: app(app(map(),f),app(app(cons(),x),xs)) -> app(app(cons(),app(f,x)),app(app(map(),f),xs)) r7: inc() -> app(map(),app(plus(),app(s(),|0|()))) r8: double() -> app(map(),app(times(),app(s(),app(s(),|0|())))) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: app#_A(x1,x2) = x1 app_A(x1,x2) = x1 + x2 + 1 times_A() = 0 s_A() = 0 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(plus(),app(s(),x)),y) -> app#(app(plus(),x),y) and R consists of: r1: app(app(plus(),|0|()),y) -> y r2: app(app(plus(),app(s(),x)),y) -> app(s(),app(app(plus(),x),y)) r3: app(app(times(),|0|()),y) -> |0|() r4: app(app(times(),app(s(),x)),y) -> app(app(plus(),app(app(times(),x),y)),y) r5: app(app(map(),f),nil()) -> nil() r6: app(app(map(),f),app(app(cons(),x),xs)) -> app(app(cons(),app(f,x)),app(app(map(),f),xs)) r7: inc() -> app(map(),app(plus(),app(s(),|0|()))) r8: double() -> app(map(),app(times(),app(s(),app(s(),|0|())))) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^1 order: standard order interpretations: app#_A(x1,x2) = x1 app_A(x1,x2) = x1 + x2 + 1 plus_A() = 0 s_A() = 0 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.