YES

We show the termination of the TRS R:

  le(|0|(),y) -> true()
  le(s(x),|0|()) -> false()
  le(s(x),s(y)) -> le(x,y)
  minus(|0|(),y) -> |0|()
  minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
  if_minus(true(),s(x),y) -> |0|()
  if_minus(false(),s(x),y) -> s(minus(x,y))
  mod(|0|(),y) -> |0|()
  mod(s(x),|0|()) -> |0|()
  mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y))
  if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y))
  if_mod(false(),s(x),s(y)) -> s(x)

-- SCC decomposition.

Consider the dependency pair problem (P, R), where P consists of

p1: le#(s(x),s(y)) -> le#(x,y)
p2: minus#(s(x),y) -> if_minus#(le(s(x),y),s(x),y)
p3: minus#(s(x),y) -> le#(s(x),y)
p4: if_minus#(false(),s(x),y) -> minus#(x,y)
p5: mod#(s(x),s(y)) -> if_mod#(le(y,x),s(x),s(y))
p6: mod#(s(x),s(y)) -> le#(y,x)
p7: if_mod#(true(),s(x),s(y)) -> mod#(minus(x,y),s(y))
p8: if_mod#(true(),s(x),s(y)) -> minus#(x,y)

and R consists of:

r1: le(|0|(),y) -> true()
r2: le(s(x),|0|()) -> false()
r3: le(s(x),s(y)) -> le(x,y)
r4: minus(|0|(),y) -> |0|()
r5: minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
r6: if_minus(true(),s(x),y) -> |0|()
r7: if_minus(false(),s(x),y) -> s(minus(x,y))
r8: mod(|0|(),y) -> |0|()
r9: mod(s(x),|0|()) -> |0|()
r10: mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y))
r11: if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y))
r12: if_mod(false(),s(x),s(y)) -> s(x)

The estimated dependency graph contains the following SCCs:

  {p5, p7}
  {p2, p4}
  {p1}


-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: if_mod#(true(),s(x),s(y)) -> mod#(minus(x,y),s(y))
p2: mod#(s(x),s(y)) -> if_mod#(le(y,x),s(x),s(y))

and R consists of:

r1: le(|0|(),y) -> true()
r2: le(s(x),|0|()) -> false()
r3: le(s(x),s(y)) -> le(x,y)
r4: minus(|0|(),y) -> |0|()
r5: minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
r6: if_minus(true(),s(x),y) -> |0|()
r7: if_minus(false(),s(x),y) -> s(minus(x,y))
r8: mod(|0|(),y) -> |0|()
r9: mod(s(x),|0|()) -> |0|()
r10: mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y))
r11: if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y))
r12: if_mod(false(),s(x),s(y)) -> s(x)

The set of usable rules consists of

  r1, r2, r3, r4, r5, r6, r7

Take the reduction pair:

  matrix interpretations:
  
    carrier: N^1
    order: standard order
    interpretations:
      if_mod#_A(x1,x2,x3) = x2
      true_A() = 1
      s_A(x1) = x1 + 3
      mod#_A(x1,x2) = x1 + 1
      minus_A(x1,x2) = x1 + 1
      le_A(x1,x2) = 1
      if_minus_A(x1,x2,x3) = x2 + 1
      |0|_A() = 0
      false_A() = 1

The next rules are strictly ordered:

  p1, p2

We remove them from the problem.  Then no dependency pair remains.

-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: if_minus#(false(),s(x),y) -> minus#(x,y)
p2: minus#(s(x),y) -> if_minus#(le(s(x),y),s(x),y)

and R consists of:

r1: le(|0|(),y) -> true()
r2: le(s(x),|0|()) -> false()
r3: le(s(x),s(y)) -> le(x,y)
r4: minus(|0|(),y) -> |0|()
r5: minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
r6: if_minus(true(),s(x),y) -> |0|()
r7: if_minus(false(),s(x),y) -> s(minus(x,y))
r8: mod(|0|(),y) -> |0|()
r9: mod(s(x),|0|()) -> |0|()
r10: mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y))
r11: if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y))
r12: if_mod(false(),s(x),s(y)) -> s(x)

The set of usable rules consists of

  r1, r2, r3

Take the reduction pair:

  matrix interpretations:
  
    carrier: N^1
    order: standard order
    interpretations:
      if_minus#_A(x1,x2,x3) = x2
      false_A() = 1
      s_A(x1) = x1 + 1
      minus#_A(x1,x2) = x1
      le_A(x1,x2) = x1 + x2
      |0|_A() = 1
      true_A() = 0

The next rules are strictly ordered:

  p1

We remove them from the problem.

-- SCC decomposition.

Consider the dependency pair problem (P, R), where P consists of

p1: minus#(s(x),y) -> if_minus#(le(s(x),y),s(x),y)

and R consists of:

r1: le(|0|(),y) -> true()
r2: le(s(x),|0|()) -> false()
r3: le(s(x),s(y)) -> le(x,y)
r4: minus(|0|(),y) -> |0|()
r5: minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
r6: if_minus(true(),s(x),y) -> |0|()
r7: if_minus(false(),s(x),y) -> s(minus(x,y))
r8: mod(|0|(),y) -> |0|()
r9: mod(s(x),|0|()) -> |0|()
r10: mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y))
r11: if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y))
r12: if_mod(false(),s(x),s(y)) -> s(x)

The estimated dependency graph contains the following SCCs:

  (no SCCs)

-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: le#(s(x),s(y)) -> le#(x,y)

and R consists of:

r1: le(|0|(),y) -> true()
r2: le(s(x),|0|()) -> false()
r3: le(s(x),s(y)) -> le(x,y)
r4: minus(|0|(),y) -> |0|()
r5: minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
r6: if_minus(true(),s(x),y) -> |0|()
r7: if_minus(false(),s(x),y) -> s(minus(x,y))
r8: mod(|0|(),y) -> |0|()
r9: mod(s(x),|0|()) -> |0|()
r10: mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y))
r11: if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y))
r12: if_mod(false(),s(x),s(y)) -> s(x)

The set of usable rules consists of

  (no rules)

Take the reduction pair:

  matrix interpretations:
  
    carrier: N^1
    order: standard order
    interpretations:
      le#_A(x1,x2) = x1
      s_A(x1) = x1 + 1

The next rules are strictly ordered:

  p1

We remove them from the problem.  Then no dependency pair remains.