YES

We show the termination of the TRS R:

  minus(x,|0|()) -> x
  minus(s(x),s(y)) -> minus(x,y)
  quot(|0|(),s(y)) -> |0|()
  quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
  le(|0|(),y) -> true()
  le(s(x),|0|()) -> false()
  le(s(x),s(y)) -> le(x,y)
  app(nil(),y) -> y
  app(add(n,x),y) -> add(n,app(x,y))
  low(n,nil()) -> nil()
  low(n,add(m,x)) -> if_low(le(m,n),n,add(m,x))
  if_low(true(),n,add(m,x)) -> add(m,low(n,x))
  if_low(false(),n,add(m,x)) -> low(n,x)
  high(n,nil()) -> nil()
  high(n,add(m,x)) -> if_high(le(m,n),n,add(m,x))
  if_high(true(),n,add(m,x)) -> high(n,x)
  if_high(false(),n,add(m,x)) -> add(m,high(n,x))
  quicksort(nil()) -> nil()
  quicksort(add(n,x)) -> app(quicksort(low(n,x)),add(n,quicksort(high(n,x))))

-- SCC decomposition.

Consider the dependency pair problem (P, R), where P consists of

p1: minus#(s(x),s(y)) -> minus#(x,y)
p2: quot#(s(x),s(y)) -> quot#(minus(x,y),s(y))
p3: quot#(s(x),s(y)) -> minus#(x,y)
p4: le#(s(x),s(y)) -> le#(x,y)
p5: app#(add(n,x),y) -> app#(x,y)
p6: low#(n,add(m,x)) -> if_low#(le(m,n),n,add(m,x))
p7: low#(n,add(m,x)) -> le#(m,n)
p8: if_low#(true(),n,add(m,x)) -> low#(n,x)
p9: if_low#(false(),n,add(m,x)) -> low#(n,x)
p10: high#(n,add(m,x)) -> if_high#(le(m,n),n,add(m,x))
p11: high#(n,add(m,x)) -> le#(m,n)
p12: if_high#(true(),n,add(m,x)) -> high#(n,x)
p13: if_high#(false(),n,add(m,x)) -> high#(n,x)
p14: quicksort#(add(n,x)) -> app#(quicksort(low(n,x)),add(n,quicksort(high(n,x))))
p15: quicksort#(add(n,x)) -> quicksort#(low(n,x))
p16: quicksort#(add(n,x)) -> low#(n,x)
p17: quicksort#(add(n,x)) -> quicksort#(high(n,x))
p18: quicksort#(add(n,x)) -> high#(n,x)

and R consists of:

r1: minus(x,|0|()) -> x
r2: minus(s(x),s(y)) -> minus(x,y)
r3: quot(|0|(),s(y)) -> |0|()
r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
r5: le(|0|(),y) -> true()
r6: le(s(x),|0|()) -> false()
r7: le(s(x),s(y)) -> le(x,y)
r8: app(nil(),y) -> y
r9: app(add(n,x),y) -> add(n,app(x,y))
r10: low(n,nil()) -> nil()
r11: low(n,add(m,x)) -> if_low(le(m,n),n,add(m,x))
r12: if_low(true(),n,add(m,x)) -> add(m,low(n,x))
r13: if_low(false(),n,add(m,x)) -> low(n,x)
r14: high(n,nil()) -> nil()
r15: high(n,add(m,x)) -> if_high(le(m,n),n,add(m,x))
r16: if_high(true(),n,add(m,x)) -> high(n,x)
r17: if_high(false(),n,add(m,x)) -> add(m,high(n,x))
r18: quicksort(nil()) -> nil()
r19: quicksort(add(n,x)) -> app(quicksort(low(n,x)),add(n,quicksort(high(n,x))))

The estimated dependency graph contains the following SCCs:

  {p2}
  {p1}
  {p15, p17}
  {p10, p12, p13}
  {p6, p8, p9}
  {p4}
  {p5}


-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: quot#(s(x),s(y)) -> quot#(minus(x,y),s(y))

and R consists of:

r1: minus(x,|0|()) -> x
r2: minus(s(x),s(y)) -> minus(x,y)
r3: quot(|0|(),s(y)) -> |0|()
r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
r5: le(|0|(),y) -> true()
r6: le(s(x),|0|()) -> false()
r7: le(s(x),s(y)) -> le(x,y)
r8: app(nil(),y) -> y
r9: app(add(n,x),y) -> add(n,app(x,y))
r10: low(n,nil()) -> nil()
r11: low(n,add(m,x)) -> if_low(le(m,n),n,add(m,x))
r12: if_low(true(),n,add(m,x)) -> add(m,low(n,x))
r13: if_low(false(),n,add(m,x)) -> low(n,x)
r14: high(n,nil()) -> nil()
r15: high(n,add(m,x)) -> if_high(le(m,n),n,add(m,x))
r16: if_high(true(),n,add(m,x)) -> high(n,x)
r17: if_high(false(),n,add(m,x)) -> add(m,high(n,x))
r18: quicksort(nil()) -> nil()
r19: quicksort(add(n,x)) -> app(quicksort(low(n,x)),add(n,quicksort(high(n,x))))

The set of usable rules consists of

  r1, r2

Take the reduction pair:

  matrix interpretations:
  
    carrier: N^1
    order: standard order
    interpretations:
      quot#_A(x1,x2) = x1
      s_A(x1) = x1 + 1
      minus_A(x1,x2) = x1
      |0|_A() = 0

The next rules are strictly ordered:

  p1

We remove them from the problem.  Then no dependency pair remains.

-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: minus#(s(x),s(y)) -> minus#(x,y)

and R consists of:

r1: minus(x,|0|()) -> x
r2: minus(s(x),s(y)) -> minus(x,y)
r3: quot(|0|(),s(y)) -> |0|()
r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
r5: le(|0|(),y) -> true()
r6: le(s(x),|0|()) -> false()
r7: le(s(x),s(y)) -> le(x,y)
r8: app(nil(),y) -> y
r9: app(add(n,x),y) -> add(n,app(x,y))
r10: low(n,nil()) -> nil()
r11: low(n,add(m,x)) -> if_low(le(m,n),n,add(m,x))
r12: if_low(true(),n,add(m,x)) -> add(m,low(n,x))
r13: if_low(false(),n,add(m,x)) -> low(n,x)
r14: high(n,nil()) -> nil()
r15: high(n,add(m,x)) -> if_high(le(m,n),n,add(m,x))
r16: if_high(true(),n,add(m,x)) -> high(n,x)
r17: if_high(false(),n,add(m,x)) -> add(m,high(n,x))
r18: quicksort(nil()) -> nil()
r19: quicksort(add(n,x)) -> app(quicksort(low(n,x)),add(n,quicksort(high(n,x))))

The set of usable rules consists of

  (no rules)

Take the reduction pair:

  matrix interpretations:
  
    carrier: N^1
    order: standard order
    interpretations:
      minus#_A(x1,x2) = x1
      s_A(x1) = x1 + 1

The next rules are strictly ordered:

  p1

We remove them from the problem.  Then no dependency pair remains.

-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: quicksort#(add(n,x)) -> quicksort#(high(n,x))
p2: quicksort#(add(n,x)) -> quicksort#(low(n,x))

and R consists of:

r1: minus(x,|0|()) -> x
r2: minus(s(x),s(y)) -> minus(x,y)
r3: quot(|0|(),s(y)) -> |0|()
r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
r5: le(|0|(),y) -> true()
r6: le(s(x),|0|()) -> false()
r7: le(s(x),s(y)) -> le(x,y)
r8: app(nil(),y) -> y
r9: app(add(n,x),y) -> add(n,app(x,y))
r10: low(n,nil()) -> nil()
r11: low(n,add(m,x)) -> if_low(le(m,n),n,add(m,x))
r12: if_low(true(),n,add(m,x)) -> add(m,low(n,x))
r13: if_low(false(),n,add(m,x)) -> low(n,x)
r14: high(n,nil()) -> nil()
r15: high(n,add(m,x)) -> if_high(le(m,n),n,add(m,x))
r16: if_high(true(),n,add(m,x)) -> high(n,x)
r17: if_high(false(),n,add(m,x)) -> add(m,high(n,x))
r18: quicksort(nil()) -> nil()
r19: quicksort(add(n,x)) -> app(quicksort(low(n,x)),add(n,quicksort(high(n,x))))

The set of usable rules consists of

  r5, r6, r7, r10, r11, r12, r13, r14, r15, r16, r17

Take the reduction pair:

  matrix interpretations:
  
    carrier: N^1
    order: standard order
    interpretations:
      quicksort#_A(x1) = x1
      add_A(x1,x2) = x1 + x2 + 2
      high_A(x1,x2) = x1 + x2 + 2
      low_A(x1,x2) = x1 + x2 + 1
      le_A(x1,x2) = 1
      |0|_A() = 1
      true_A() = 1
      s_A(x1) = x1 + 1
      false_A() = 1
      if_low_A(x1,x2,x3) = x2 + x3 + 1
      if_high_A(x1,x2,x3) = x2 + x3 + 2
      nil_A() = 1

The next rules are strictly ordered:

  p2

We remove them from the problem.

-- SCC decomposition.

Consider the dependency pair problem (P, R), where P consists of

p1: quicksort#(add(n,x)) -> quicksort#(high(n,x))

and R consists of:

r1: minus(x,|0|()) -> x
r2: minus(s(x),s(y)) -> minus(x,y)
r3: quot(|0|(),s(y)) -> |0|()
r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
r5: le(|0|(),y) -> true()
r6: le(s(x),|0|()) -> false()
r7: le(s(x),s(y)) -> le(x,y)
r8: app(nil(),y) -> y
r9: app(add(n,x),y) -> add(n,app(x,y))
r10: low(n,nil()) -> nil()
r11: low(n,add(m,x)) -> if_low(le(m,n),n,add(m,x))
r12: if_low(true(),n,add(m,x)) -> add(m,low(n,x))
r13: if_low(false(),n,add(m,x)) -> low(n,x)
r14: high(n,nil()) -> nil()
r15: high(n,add(m,x)) -> if_high(le(m,n),n,add(m,x))
r16: if_high(true(),n,add(m,x)) -> high(n,x)
r17: if_high(false(),n,add(m,x)) -> add(m,high(n,x))
r18: quicksort(nil()) -> nil()
r19: quicksort(add(n,x)) -> app(quicksort(low(n,x)),add(n,quicksort(high(n,x))))

The estimated dependency graph contains the following SCCs:

  {p1}


-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: quicksort#(add(n,x)) -> quicksort#(high(n,x))

and R consists of:

r1: minus(x,|0|()) -> x
r2: minus(s(x),s(y)) -> minus(x,y)
r3: quot(|0|(),s(y)) -> |0|()
r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
r5: le(|0|(),y) -> true()
r6: le(s(x),|0|()) -> false()
r7: le(s(x),s(y)) -> le(x,y)
r8: app(nil(),y) -> y
r9: app(add(n,x),y) -> add(n,app(x,y))
r10: low(n,nil()) -> nil()
r11: low(n,add(m,x)) -> if_low(le(m,n),n,add(m,x))
r12: if_low(true(),n,add(m,x)) -> add(m,low(n,x))
r13: if_low(false(),n,add(m,x)) -> low(n,x)
r14: high(n,nil()) -> nil()
r15: high(n,add(m,x)) -> if_high(le(m,n),n,add(m,x))
r16: if_high(true(),n,add(m,x)) -> high(n,x)
r17: if_high(false(),n,add(m,x)) -> add(m,high(n,x))
r18: quicksort(nil()) -> nil()
r19: quicksort(add(n,x)) -> app(quicksort(low(n,x)),add(n,quicksort(high(n,x))))

The set of usable rules consists of

  r5, r6, r7, r14, r15, r16, r17

Take the reduction pair:

  matrix interpretations:
  
    carrier: N^1
    order: standard order
    interpretations:
      quicksort#_A(x1) = x1
      add_A(x1,x2) = x2 + 2
      high_A(x1,x2) = x2 + 1
      le_A(x1,x2) = 1
      |0|_A() = 1
      true_A() = 1
      s_A(x1) = x1 + 1
      false_A() = 1
      if_high_A(x1,x2,x3) = x3 + 1
      nil_A() = 1

The next rules are strictly ordered:

  p1

We remove them from the problem.  Then no dependency pair remains.

-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: if_high#(false(),n,add(m,x)) -> high#(n,x)
p2: high#(n,add(m,x)) -> if_high#(le(m,n),n,add(m,x))
p3: if_high#(true(),n,add(m,x)) -> high#(n,x)

and R consists of:

r1: minus(x,|0|()) -> x
r2: minus(s(x),s(y)) -> minus(x,y)
r3: quot(|0|(),s(y)) -> |0|()
r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
r5: le(|0|(),y) -> true()
r6: le(s(x),|0|()) -> false()
r7: le(s(x),s(y)) -> le(x,y)
r8: app(nil(),y) -> y
r9: app(add(n,x),y) -> add(n,app(x,y))
r10: low(n,nil()) -> nil()
r11: low(n,add(m,x)) -> if_low(le(m,n),n,add(m,x))
r12: if_low(true(),n,add(m,x)) -> add(m,low(n,x))
r13: if_low(false(),n,add(m,x)) -> low(n,x)
r14: high(n,nil()) -> nil()
r15: high(n,add(m,x)) -> if_high(le(m,n),n,add(m,x))
r16: if_high(true(),n,add(m,x)) -> high(n,x)
r17: if_high(false(),n,add(m,x)) -> add(m,high(n,x))
r18: quicksort(nil()) -> nil()
r19: quicksort(add(n,x)) -> app(quicksort(low(n,x)),add(n,quicksort(high(n,x))))

The set of usable rules consists of

  r5, r6, r7

Take the reduction pair:

  matrix interpretations:
  
    carrier: N^1
    order: standard order
    interpretations:
      if_high#_A(x1,x2,x3) = x3
      false_A() = 1
      add_A(x1,x2) = x1 + x2 + 1
      high#_A(x1,x2) = x2
      le_A(x1,x2) = x1 + 1
      true_A() = 1
      |0|_A() = 1
      s_A(x1) = x1 + 1

The next rules are strictly ordered:

  p1, p3

We remove them from the problem.

-- SCC decomposition.

Consider the dependency pair problem (P, R), where P consists of

p1: high#(n,add(m,x)) -> if_high#(le(m,n),n,add(m,x))

and R consists of:

r1: minus(x,|0|()) -> x
r2: minus(s(x),s(y)) -> minus(x,y)
r3: quot(|0|(),s(y)) -> |0|()
r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
r5: le(|0|(),y) -> true()
r6: le(s(x),|0|()) -> false()
r7: le(s(x),s(y)) -> le(x,y)
r8: app(nil(),y) -> y
r9: app(add(n,x),y) -> add(n,app(x,y))
r10: low(n,nil()) -> nil()
r11: low(n,add(m,x)) -> if_low(le(m,n),n,add(m,x))
r12: if_low(true(),n,add(m,x)) -> add(m,low(n,x))
r13: if_low(false(),n,add(m,x)) -> low(n,x)
r14: high(n,nil()) -> nil()
r15: high(n,add(m,x)) -> if_high(le(m,n),n,add(m,x))
r16: if_high(true(),n,add(m,x)) -> high(n,x)
r17: if_high(false(),n,add(m,x)) -> add(m,high(n,x))
r18: quicksort(nil()) -> nil()
r19: quicksort(add(n,x)) -> app(quicksort(low(n,x)),add(n,quicksort(high(n,x))))

The estimated dependency graph contains the following SCCs:

  (no SCCs)

-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: if_low#(false(),n,add(m,x)) -> low#(n,x)
p2: low#(n,add(m,x)) -> if_low#(le(m,n),n,add(m,x))
p3: if_low#(true(),n,add(m,x)) -> low#(n,x)

and R consists of:

r1: minus(x,|0|()) -> x
r2: minus(s(x),s(y)) -> minus(x,y)
r3: quot(|0|(),s(y)) -> |0|()
r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
r5: le(|0|(),y) -> true()
r6: le(s(x),|0|()) -> false()
r7: le(s(x),s(y)) -> le(x,y)
r8: app(nil(),y) -> y
r9: app(add(n,x),y) -> add(n,app(x,y))
r10: low(n,nil()) -> nil()
r11: low(n,add(m,x)) -> if_low(le(m,n),n,add(m,x))
r12: if_low(true(),n,add(m,x)) -> add(m,low(n,x))
r13: if_low(false(),n,add(m,x)) -> low(n,x)
r14: high(n,nil()) -> nil()
r15: high(n,add(m,x)) -> if_high(le(m,n),n,add(m,x))
r16: if_high(true(),n,add(m,x)) -> high(n,x)
r17: if_high(false(),n,add(m,x)) -> add(m,high(n,x))
r18: quicksort(nil()) -> nil()
r19: quicksort(add(n,x)) -> app(quicksort(low(n,x)),add(n,quicksort(high(n,x))))

The set of usable rules consists of

  r5, r6, r7

Take the reduction pair:

  matrix interpretations:
  
    carrier: N^1
    order: standard order
    interpretations:
      if_low#_A(x1,x2,x3) = x3
      false_A() = 1
      add_A(x1,x2) = x1 + x2 + 1
      low#_A(x1,x2) = x2
      le_A(x1,x2) = x1 + 1
      true_A() = 1
      |0|_A() = 1
      s_A(x1) = x1 + 1

The next rules are strictly ordered:

  p1, p3

We remove them from the problem.

-- SCC decomposition.

Consider the dependency pair problem (P, R), where P consists of

p1: low#(n,add(m,x)) -> if_low#(le(m,n),n,add(m,x))

and R consists of:

r1: minus(x,|0|()) -> x
r2: minus(s(x),s(y)) -> minus(x,y)
r3: quot(|0|(),s(y)) -> |0|()
r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
r5: le(|0|(),y) -> true()
r6: le(s(x),|0|()) -> false()
r7: le(s(x),s(y)) -> le(x,y)
r8: app(nil(),y) -> y
r9: app(add(n,x),y) -> add(n,app(x,y))
r10: low(n,nil()) -> nil()
r11: low(n,add(m,x)) -> if_low(le(m,n),n,add(m,x))
r12: if_low(true(),n,add(m,x)) -> add(m,low(n,x))
r13: if_low(false(),n,add(m,x)) -> low(n,x)
r14: high(n,nil()) -> nil()
r15: high(n,add(m,x)) -> if_high(le(m,n),n,add(m,x))
r16: if_high(true(),n,add(m,x)) -> high(n,x)
r17: if_high(false(),n,add(m,x)) -> add(m,high(n,x))
r18: quicksort(nil()) -> nil()
r19: quicksort(add(n,x)) -> app(quicksort(low(n,x)),add(n,quicksort(high(n,x))))

The estimated dependency graph contains the following SCCs:

  (no SCCs)

-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: le#(s(x),s(y)) -> le#(x,y)

and R consists of:

r1: minus(x,|0|()) -> x
r2: minus(s(x),s(y)) -> minus(x,y)
r3: quot(|0|(),s(y)) -> |0|()
r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
r5: le(|0|(),y) -> true()
r6: le(s(x),|0|()) -> false()
r7: le(s(x),s(y)) -> le(x,y)
r8: app(nil(),y) -> y
r9: app(add(n,x),y) -> add(n,app(x,y))
r10: low(n,nil()) -> nil()
r11: low(n,add(m,x)) -> if_low(le(m,n),n,add(m,x))
r12: if_low(true(),n,add(m,x)) -> add(m,low(n,x))
r13: if_low(false(),n,add(m,x)) -> low(n,x)
r14: high(n,nil()) -> nil()
r15: high(n,add(m,x)) -> if_high(le(m,n),n,add(m,x))
r16: if_high(true(),n,add(m,x)) -> high(n,x)
r17: if_high(false(),n,add(m,x)) -> add(m,high(n,x))
r18: quicksort(nil()) -> nil()
r19: quicksort(add(n,x)) -> app(quicksort(low(n,x)),add(n,quicksort(high(n,x))))

The set of usable rules consists of

  (no rules)

Take the reduction pair:

  matrix interpretations:
  
    carrier: N^1
    order: standard order
    interpretations:
      le#_A(x1,x2) = x1
      s_A(x1) = x1 + 1

The next rules are strictly ordered:

  p1

We remove them from the problem.  Then no dependency pair remains.

-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: app#(add(n,x),y) -> app#(x,y)

and R consists of:

r1: minus(x,|0|()) -> x
r2: minus(s(x),s(y)) -> minus(x,y)
r3: quot(|0|(),s(y)) -> |0|()
r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
r5: le(|0|(),y) -> true()
r6: le(s(x),|0|()) -> false()
r7: le(s(x),s(y)) -> le(x,y)
r8: app(nil(),y) -> y
r9: app(add(n,x),y) -> add(n,app(x,y))
r10: low(n,nil()) -> nil()
r11: low(n,add(m,x)) -> if_low(le(m,n),n,add(m,x))
r12: if_low(true(),n,add(m,x)) -> add(m,low(n,x))
r13: if_low(false(),n,add(m,x)) -> low(n,x)
r14: high(n,nil()) -> nil()
r15: high(n,add(m,x)) -> if_high(le(m,n),n,add(m,x))
r16: if_high(true(),n,add(m,x)) -> high(n,x)
r17: if_high(false(),n,add(m,x)) -> add(m,high(n,x))
r18: quicksort(nil()) -> nil()
r19: quicksort(add(n,x)) -> app(quicksort(low(n,x)),add(n,quicksort(high(n,x))))

The set of usable rules consists of

  (no rules)

Take the reduction pair:

  matrix interpretations:
  
    carrier: N^1
    order: standard order
    interpretations:
      app#_A(x1,x2) = x1
      add_A(x1,x2) = x2 + 1

The next rules are strictly ordered:

  p1

We remove them from the problem.  Then no dependency pair remains.