YES
0 QTRS
↳1 QTRSRRRProof (⇔, 0 ms)
↳2 QTRS
↳3 DependencyPairsProof (⇔, 0 ms)
↳4 QDP
↳5 MRRProof (⇔, 0 ms)
↳6 QDP
↳7 QDPSizeChangeProof (⇔, 0 ms)
↳8 YES
a(lambda(x), y) → lambda(a(x, 1))
a(lambda(x), y) → lambda(a(x, a(y, t)))
a(a(x, y), z) → a(x, a(y, z))
lambda(x) → x
a(x, y) → x
a(x, y) → y
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(1) = 0
POL(a(x1, x2)) = x1 + x2
POL(lambda(x1)) = 2 + x1
POL(t) = 0
lambda(x) → x
a(lambda(x), y) → lambda(a(x, 1))
a(lambda(x), y) → lambda(a(x, a(y, t)))
a(a(x, y), z) → a(x, a(y, z))
a(x, y) → x
a(x, y) → y
A(lambda(x), y) → A(x, 1)
A(lambda(x), y) → A(x, a(y, t))
A(lambda(x), y) → A(y, t)
A(a(x, y), z) → A(x, a(y, z))
A(a(x, y), z) → A(y, z)
a(lambda(x), y) → lambda(a(x, 1))
a(lambda(x), y) → lambda(a(x, a(y, t)))
a(a(x, y), z) → a(x, a(y, z))
a(x, y) → x
a(x, y) → y
A(lambda(x), y) → A(x, 1)
A(lambda(x), y) → A(x, a(y, t))
A(lambda(x), y) → A(y, t)
POL(1) = 0
POL(A(x1, x2)) = 2·x1 + 2·x2
POL(a(x1, x2)) = x1 + x2
POL(lambda(x1)) = 2 + x1
POL(t) = 0
A(a(x, y), z) → A(x, a(y, z))
A(a(x, y), z) → A(y, z)
a(lambda(x), y) → lambda(a(x, 1))
a(lambda(x), y) → lambda(a(x, a(y, t)))
a(a(x, y), z) → a(x, a(y, z))
a(x, y) → x
a(x, y) → y
From the DPs we obtained the following set of size-change graphs: